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Preface
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us continue refining this resource.

—The CS-173 Course Team
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Part I: Number Systems

[Exercise 1] Basics of Different Positional Number Formats

a) Given n bits, how many different numbers can be represented?

b) Consider the given ranges below. For each range, if we want n-bit integers to be
able to represent all the numbers in the range, what is the lowest value of n? i) [0, 256)
ii) [−1024, 1024) iii) [3325, 3581) iv) [−657, 879)

c) In general, how many bits are required to represent integers in the range of [a, b),
where a and b are integers, and b ≥ a?

d) Fill the missing values in Table 1 by converting between the different listed formats.
(Note: Consider all formats to be unsigned)

Decimal Binary Octal Hexadecimal
139
185

00111010
11001001

70
323

1B
6C

Table 1: Conversion between decimal, binary and hexadecimal formats.
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Solution 1
Number Systems

[Solution 1] Basics of Different Positional Number Formats

a) One bit can represent two different numbers. Therefore, n bits can represent 2n

different numbers.

b) Follow the formula outlined in the solution to question (b)
i) [0, 256) = 8 ii) [−1024, 1024) = 11 iii) [3325, 3581) = 8 iv) [−657, 879) = 11

c) There are a total of (b − a) unique integers in the range [a, b). To represent these
unique integers, we need ⌈log2(b− a)⌉ bits.

d) Rules for coversion:
Decimal to binary: Divide the decimal number by 2 and record the remainder.

Continue dividing the quotient by 2 until the quotient is 0.
The binary number is the sequence of remainders in reverse order.

Binary to decimal: Multiply each bit by 2i, where i is the position of the bit.
Add the products to get the decimal number.

The other number formats (Hex, Octal) are similar, follow the same steps as outlined
above but replace the number 2 with 16 for Hex and 8 for Octal.

Decimal Binary Octal Hexadecimal
139 10001011 213 8B
185 10111001 271 B9
58 00111010 72 3A
201 11001001 311 C9
56 00111000 70 38
211 11010011 323 D3
27 00011011 33 1B
108 01101100 154 6C
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[Exercise 2] Signed and Unsigned Integers

a) Given n bits, what is the range of signed (two’s complement) and unsigned integers
that can be represented? In which scenario, would you prefer unsigned over signed?

b) Describe how overflow is handled differently for unsigned and two’s complement
signed integers.

c) Convert the following decimal numbers in Table 2 to 8-bit sign-magnitude and two’s
complement binary format.

Decimal Sign-magnitude Two’s complement
−32
73
−98
47
−39
86

Table 2: Conversion of decimal numbers to signed binary formats.

d) Table 3 contains 4-bit binary numbers. Extend them to 8 bits and convert the 8-bit
binary numbers to the different listed formats.

4-bit
Sign-magnitude

8-bit
Sign-magnitude Hexadecimal Decimal 8-bit

Two’s complement
0110
1100
1111
0001
4-bit

Two’s complement
8-bit

Two’s complement Hexadecimal Decimal 8-bit
Sign-magnitude

1010
0101
1100
1000

Table 3: Sign extension and conversion between different formats.

e) List the advantages of two’s complement over sign-magnitude form in terms of:
i) Difference in the way 0 is represented
ii) Algorithm for addition and subtraction
iii) Numerical range and handling overflows
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[Solution 2] Signed and Unsigned Integers

a) Signed (Two’s complement): [−2n−1, 2n−1), Unsigned: [0, 2n).
We would prefer to use unsigned integers when we know that the numbers will always
be positive because it allows us to represent 2× more positive numbers than signed
integers.

b) For signed integers in two’s complement, overflow results in the number being
rolled over from the maximum representable positive number to the minimum rep-
resentable negative number, and vice versa.
For unsigned integers, overflow results in the number being rolled over from the max-
imum representable number to 0, and vice versa.

c) For sign magnitude, convert the magnitude to 7-bit binary, and the MSB is 0 for
positive and 1 for negative. For two’s complement form, use the formula: −x = x̄+1.

Decimal Sign-magnitude Two’s complement
−32 10100000 11100000
73 01001001 01001001
−98 11100010 10011110
47 00101111 00101111
−39 10100111 11011001
86 01010110 01010110

d) For sign magnitude, the MSB remains the same and the extra bits are all zero. For
two’s complement, the extra bits are same as the MSB.

4-bit
Sign-magnitude

8-bit
Sign-magnitude Hexadecimal Decimal 8-bit

Two’s complement
0110 0000 0110 06 6 0000 0110
1100 1000 0100 84 −4 1111 1100
1111 1000 0111 87 −7 1111 1001
0001 0000 0001 01 1 0000 0001
4-bit

Two’s complement
8-bit

Two’s complement Hexadecimal Decimal 8-bit
Sign-magnitude

1010 1111 1010 FA −6 1000 0110
0101 0000 0101 05 5 0000 0101
1100 1111 1100 FC −4 1000 0100
1000 1111 1000 F8 −8 1000 1000
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e)
i) In sign-magnitude form, 0 is represented as +0 and −0, which is redundant. In two’s
complement, 0 is represented as a single value.
ii) In two’s complement, addition and subtraction can be performed using the same
algorithm. In sign-magnitude form, separate algorithms are required for addition and
subtraction.
iii) Two’s complement has a larger numerical range than sign-magnitude form, since it
can also represent −2n−1, in contrast to sign-magnitude. Moreover, two’s complement
can handle overflows more efficiently.
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[Exercise 3] Hamming Distance and Hamming Weight

a) Table 4 contains rows of two 8-bit binary numbers A and B. Fill in the table with the
hamming weight (HW) of A and B, and the hamming distance (HD) between A and B.

A HW(A) B HW(B) HD(A, B)
01001010 11011110
00010100 01000000
01000010 01010101
11010110 10010000
10011111 01010010

Table 4: Table for hamming distance and hamming weight

b) Consider a binary string of length 10. Answer the following questions:
i) If the hamming weight of the string is 7, how many 1s and 0s are in the string?
ii) How many different binary strings can be formed for a hamming weight of 7?

c) Given two binary strings, one of length 10 with a hamming weight of 6, and another
of length 10 with a hamming weight of 4, what is the minimum and maximum possible
hamming distance between them?

d) What is the hamming distance between any two consecutive numbers represented
in Gray code?

e) Consider a set of binary strings S = {010, 101, 110, 001}. Determine the minimum
and maximum hamming distances among all pairs of strings in S.

f) Consider two arbitrary binary strings of length n. Answer the following questions:
i) What is the total number of combinations such that the two binary strings are

different from each other?
ii) How many distinct hamming distances are possible for two binary strings with

length=n?
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[Solution 3] Hamming Distance and Hamming Weight

a) Hamming weight is simply the number of 1s, and Hamming distance is the number
of bits that differ between two binary numbers.

A HW(A) B HW(B) HD(A, B)
01001010 3 11011110 6 3
00010100 2 01000000 1 3
01000010 2 01010101 4 4
11010110 5 10010000 2 3
10011111 6 01010010 3 5

b) i) Number of 1s = 7, Number of 0s = 10 - 7 = 3.
ii) Out of 10 places, choose 7 places for 1s, so number of combinations =

(
10
7

)
= 120.

c) Maximum Hamming distance occurs when all four 1s in one string are at different
positions from the six 1s in the other string, resulting in HD = 10. Minimum Hamming
distance occurs when all four 1s in one string are at the same positions as four of the
six 1s in the other string, resulting in HD = 2.

d) Consecutive numbers in Gray code differ by only 1 bit, so the Hamming distance
between them is 1.

e) The Hamming distance among all pairs are shown in the table below. The min HD
is 1, and the max HD is 3.

HD 010 101 110 001
010 x 3 1 2
101 3 x 2 1
110 1 2 x 3
001 2 1 3 x

f) i) Each string can have 2n values, so there are a total of 2n ∗ 2n = 22n possible
pairs. Out of these pairs, 2n pairs have the same value for both strings. So, number of
combinations such that the two binary stings are different = 22n − 2n.
ii) Hamming distances range from 0 to n. So, (n + 1) distinct Hamming distances are
possible.
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[Exercise 4] Alternate Number Formats: BCD and Gray Code

a) Binary-Coded Decimal (BCD) is an alternate number format that represents each
digit of a decimal number with the corresponding 4-bit binary number (Wiki). In the
context of BCD, answer the following questions:
i) Convert the following decimal numbers to BCD: 236, 61 and 158
ii) Are the following BCD numbers valid? 00111001, 01101010, 11100011
iii) What are the disadvantages of using BCD?

b) Gray code is another alternate number format where two consecutive decimal num-
bers in their binary representation differ by only 1 bit. For example, 1, 2, and 3 are
represented as 0001, 0011, and 0010, respectively (Wiki). In the context of Gray code,
answer the following questions:
i) Determine if the sequence of consecutive numbers is valid: 0110, 1110, 0101
ii) Convert the following decimal numbers to Gray code: 236, 61 and 158 [Hint]
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[Solution 4] Alternate Number Formats: BCD and Gray Code

a) i) Convert each digit of the decimal number to its corresponding 4-bit binary.
236 = 0010 0011 0110, 61 = 0110 0001, 158 = 0001 0101 1000.

ii) Split the binary into 4-bit chunks and check if each 4-bit binary chunk is a number
between 0 and 9.
0011 1001 = 3 9 is valid, 0110 1010 = 6 10 is invalid, 1110 0011 = 14 3 is invalid.

iii) 4-bit binary can represent 24 = 16 different numbers but we are using them to
represent only digits from 0 to 9, thus wasting bits and is inefficient.

b) i) The sequence is invalid as the binary representation of consecutive numbers
should differ by only 1 bit but three bits are different between 1110 and 0101.

ii) Convert the decimal number to binary, and then convert the binary to Gray code. To
convert a binary number to Gray code, follow the following steps:

• The MSB of the Gray code is the same as the MSB of the binary number.

• If the n-th bit of binary is different from the (n − 1)-th bit of binary, then the
(n− 1)-th bit of the Gray code is 1, else 0.

23610 = 1110 11002 = 1001 1010
6110 = 0011 11012 = 0010 0011
15810 = 1001 11102 = 1101 0001
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[Exercise 5] Arithmetic Operations on Signed and Unsigned In-
tegers

a) Convert the decimal numbers in Table 5 to 8-bit binary numbers and perform the
arithmetic shift operations.

Unsigned
A Bin(A) A>>1 A>>3 A<<1 A<<3
39
192
75

Signed (two’s complement)
96
−38
49

−106

Table 5: Binary Shift operations

b) Consider 16 unsigned binary numbers, each consisting of 8 bits.
i) How many bits are needed to represent the sum of these 16 numbers?
ii) How many bits are needed to represent the product of these 16 numbers in binary?

c) Each row of Table 6 contains two decimal numbers: A and B. Convert them to 4-
bit binary numbers in two’s complement form. Add the 4-bit binary numbers, and
represent the sum using only 4 bits. Compare the result of the binary addition with the
decimal sum of A and B, and most importantly, explain the difference if any.

A B A+B Bin(A) Bin(B) Bin(A)+Bin(B)
6 7
3 -8
-2 -8
5 -3
1 5

Table 6: Binary addition

d) Consider two decimal numbers, 12 and 6. Convert them to 4-bit unsigned binary
numbers, multiply the two binary numbers, and show the steps involved.

e) Outline an algorithm for:
i) Multiplying two numbers represented in sign-magnitude form
ii) Multiplying two numbers represented in two’s complement form
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[Solution 5] Arithmetic Operations on Signed and Unsigned In-
tegers

a) For unsigned integers, the new bits are always 0. For signed integers, when right
shifting, the new bits are the same as the MSB. When left shifting, the new bits are 0.

Unsigned
A Bin(A) A>>1 A>>3 A<<1 A<<3
39 00100111 00010011 00000100 01001110 00111000
192 11000000 01100000 00011000 10000000 00000000
75 01001011 00100101 00001001 10010110 01011000

Signed (two’s complement)
96 01100000 00110000 00001100 11000000 00000000
−38 11011010 11101101 11111011 10110100 11010000
49 00110001 00011000 00000110 01100010 10001000

−106 10010110 11001011 11110010 00101100 10110000

b) The maximum value of an unsigned 8-bit number is 28 − 1 = 255 .
The maximum value of sum can be 16 × 255 = 4080. Therefore, ⌈log2(4080)⌉ = 12 bits
are needed to represent the sum.
The maximum value of product can be 25516. Therefore, ⌈log2(25516)⌉ = 128 bits are
needed to represent the product.
Note that ⌈x⌉ represents the smallest integer value greater than or equal to x.

c) The differences can be explained by overflow. As an example, 6 + 7 = 13 but 13 is
greater than the maximum possible representable value 7, so it rolls over and results
in −8 + (13− 7− 1) = −3 which is the same result as the binary addition.

A B A+B Bin(A) Bin(B) Bin(A)+Bin(B)
6 7 13 0110 0111 1101 = -3
3 -8 -5 0011 1000 1011 = -5
-2 -8 -10 1110 1000 0110 = 6
5 -3 2 0101 1101 0010 = 2
1 5 6 0001 0101 0110 = 6

d) (12)10 = (1100)2 and (6)10 = (0110)2.
The steps for the multiplication of the two numbers are depicted in Table 7.

e)

i) Multiplying two numbers represented in sign-magnitude form:

1. Identify the signs of the two numbers.
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1 1 0 0
x 0 1 1 0

0 0 0 0
1 1 0 0

1 1 0 0
0 0 0 0
1 0 0 1 0 0 0

Table 7: Multiplication

2. Multiply the magnitudes of the two numbers.

3. Assign the sign of the result based on the signs of the two numbers. (The sign bit
should be 1 if exactly one of the sign bits is one and 0 otherwise.)

ii) Multiplying two numbers represented in two’s complement form:

1. Identify the signs of the two numbers.

2. Calculate the magnitude of each number.

3. Multiply the magnitudes of the two numbers.

4. Assign the sign of the result based on the signs of the two numbers.
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[Exercise 6] Fixed-point Representation

* Unless otherwise stated, consider two’s complement.

a) Convert the following numbers represented using fixed-point representation (Wiki)
to their decimal form, binary numbers are in two’s complement form.
i) 00001010.1101
ii) 10001010.1101
iii) 10101001.0001
iv) 01010101.1001
v) 01011010.1111

b) For a fixed-point format representation with n1 integer bits and n2 fractional bits,
find the following.
i) the most positive number
ii) the least positive number
iii) the most negative number
iv) the least negative number

c) Convert the following decimal numbers into fixed-point representation with four
integer bits in two’s complement and four fractional bits.
i) 1.5
ii) 5.25
iii) −0.125
iv) −3.0
v) −6.75
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[Solution 6] Fixed-point Representation

a) i) Given fixed-point representation in two’s complement form: 00001010.1101

1. Determine the sign:

Since the first bit is 0, the number is positive

2. Separate the integer and fractional parts:

Integer part: 000010102 = 1010

Fractional part: 11012

3. Convert the integer part to decimal:

Integer part: 10102 = 1010

4. Convert the fractional part to decimal:

Fractional part: 11012 =
1

21
+

1

22
+

1

24
=

1

2
+
1

4
+

1

16
= 0.5+0.25+0.0625 = 0.812510

5. Combine the integer and fractional parts:

Number = Integer part + Fractional part

Number = 10 + 0.8125

6. Calculate the result:

Number = 10 + 0.8125 = 10.8125

Therefore, the decimal representation of the given fixed-point representation
00001010.1101 is 10.8125.

ii) A shorter way to calculate the value:

10001010.1101 = −(27) + 23 + 21 + 2−1 + 2−2 + 2−4

= −(128) + 8 + 2 + 0.5 + 0.25 + 0.0625

= −117.1875
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iii) −86.9375 iv) 85.5625 v) 90.9375

b) i) For the most positive number: make the sign bit 0, make all the bits 1 (before and
after the decimal). Thus, the value of the number would be:

2−1 + 2−2 + ...+ 2−n2 + 20 + 21 + 22 + ...+ 2n1−2

.

ii) For the least positive number, make the sign bit 0 and make all the bits before the
binary point 0. Make the (n2 − 1) bits immediately after the binary point 0. Make the
nth
2 bit after the binary point 1. Thus, the value of the number would be:

2−n2

iii) For the most negative number: make the sign bit 1, and rest of the bits 0. Thus, the
value of the number would be:

−(2n1−1)

.

iv) For the least negative number, make the sign bit 1 and rest of the digits 1 as well.
Thus, the value of the number would be:

−2n1−1 + 2n1−2 + ...+ 22 + 21 + 20 + 2−1 + 2−2 + ...+ 2−n2

c) i) Given decimal number: 1.5

1. Determine the sign:

Since the number is positive, the sign bit is 0

2. Separate the integer and fractional parts:

Integer part: 110 = 12

Fractional part: 0.510 = 0.12

3. Convert the integer part to binary:

Integer part: 110 = 00012

4. Convert the fractional part to binary:

Fractional part: 0.510 = 0.10002
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5. Combine the integer and fractional parts:

Fixed-point representation: 0001.1000

Therefore, the fixed-point representation of the decimal number 1.5 with 4 integer bits,
and 4 fractional bits is 0001.1000.

ii) 0101.0100
iii) For negative number, use the idea of two’s complement.

1. Write the binary representation of 0.125, which is 0000.0010

2. Convert to one’s complement and add 1 to the least significant bit to get the two’s
complement form

3. As a result, we get 1111.1110, which is equal to −0.125

iv) 1101.0000 v) 1001.0100
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[Exercise 7] Floating-point Representation

* Unless otherwise stated, the bits of fraction are after the binary point. That is, you
have to add a 1 to the fraction for the calculations.

* The exponent provided has bias of 2k−1−1, where k is the number of bits in the expo-
nent. Therefore, you have to always multiply 2exponent−bias during your calculation.

a) In Table 8, convert the floating-point representation to their decimal form:

Signed bit Exponent Fraction Decimal
i) 0 0100 0100
ii) 1 1100 1101
iii) 0 1111 1100
iv) 0 1110 0001
v) 1 1011 1100
vi) 0 0011 1111

Table 8: Floating point representation

b) Convert the following decimal numbers into binary floating-point representation
using the IEEE 754 (Wiki) standard with single-precision (32 bits):
i) 2.5 ii) 3.75 iii) -4.25 iv) -5.0 v) 6.25

c) Convert the floating-point number 0.75 to its binary representation according to the
IEEE 754 standard in both single-precision and double-precision formats.

d) Below are fixed-point representation of numbers using sign-and-magnitude. Each
fixed-point has 1 sign bit, 4 bits for the integer part, and 4 bits for the fractional part.
Convert these numbers to IEEE 754 floating-point single-precision format.
i) 01101.0010
ii) 11010.1101
iii) 01111.1111
iv) 11001.1001
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[Solution 7] Floating-point Representation

a)

i) For converting the floating-point representations to their decimal format, follow the
following steps:

Sign bit: 0

Exponent: 0100

Fraction: 0100

1. Determine the sign:

Sign bit = 0 =⇒ Positive number

2. Calculate the exponent:

Exponent = 01002 = 410

3. Apply bias to the exponent:

Bias = 2(k−1) − 1

For 4-bit exponent, k = 4

Bias = 2(4−1) − 1 = 23 − 1 = 7

Exponent with bias = 410 − 7 = −3

4. Convert the fraction to decimal:

Fraction = 0.01002

Fraction =
0

2
+

1

4
+

0

8
+

0

16

Fraction =
1

4

5. Combine the sign, fraction, and exponent:

Number = 1× (2exponent−bias)× (1 + fraction)

Number = 1× 2−3 × (1 +
1

4
)
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6. Perform the calculations:

Number = 1× 2−3 × (1 +
1

4
)

Number =
1

8
× (1 +

1

4
)

Number = 0.15625

Therefore, the decimal representation of the given floating-point representation is
0.15625.

ii) −58.0
iii) 448.0
iv) 136.0
v) −28.0
vi) 0.12109375

b)

i) Here is how you can convert a decimal number x to it’s single-precision IEEE 754
standard (32 bits):

1. Convert |x| to it’s unsigned representation (divide the integer part by 2, recurs-
ively; multiply the fractional part by 2, recursively)

2. Shift the binary point such that it is after the left most 1

3. Sign bit: 1 if x < 0, 0 otherwise (if x = 0, the sign bit can be either 1 or 0)

4. Exponent: Add bias to the exponent, and convert to unsigned binary representa-
tion

5. Mantissa: The bits after the binary point

Again, let’s do explicitly for the first example:

1. Sign Bit = 0 since 2.5 > 0

2. Integer part (Divide recursively by 2 until reaching 0, and then read the remain-
ders from bottom to top):

2/2 gives remainder 0
1/2 gives remainder 1 ⇒ (2)10 = (10)2

Version 1.0 of 26th May 2025, EPFL ©2025 21 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Solution 7
Number Systems

3. Fractional part (Multiply by 2 until reaching 0 for the fractional part, read the
integer part from top to bottom):

0.5 · 2 gives integer part 1 ⇒ (0.5)10 = (0.1)2

4. Shift one to the left: 10.1 = 1.01 · 21

5. Exponent: 1 + 127 = 128 = 1000 0000

6. Mantissa: 01 = 0100...00 with 21 finishing 0s

Note: | are there to separate the 3 parts of the number

(i) 2.50 = 0|1000 0000|010 0000 0000 0000 0000 0000

(ii) 3.75 = 0|1000 0000|111 0000 0000 0000 0000 0000

(iii) −4.25 = 1|1000 0001|000 1000 0000 0000 0000 0000

(iv) −5.00 = 1|1000 0001|010 0000 0000 0000 0000 0000

(v) 6.25 = 0|1000 0001|100 1000 0000 0000 0000 0000

c) Let’s convert 0.75 into binary representation, as the integer part is zero we only need
to convert the fractional part to binary:

1. Multiply 0.75 by 2, we get 1.5

2. The integer part of 1.5 is 1 and it becomes the first bit after binary point, and for
the fractional part we again multiply by 2

3. Multiplying 0.5 by 2, we get 1.0

4. The integer part of 1.0 is 1, which becomes the second bit after binary point

5. The fractional part of 1.0 is 0, therefore, we terminate the conversion as all the
remaining bits would be zero.

(0.75)10 = (0.11)2 = (1.1)2 · (2−1)

Sign bit: 0

Exponent: −1 + 127 = 126 thus 0111 1110
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Mantissa: 100 0000 0000 0000 0000

Therefore, single precision:
0|0111 1110|100 0000 0000 0000 0000 0000

Double Precision:
Double-precision format changes the bias (from 127 to 1023 and the size of the
exponent and of the fraction, but the calculations stay similar):

0|011 1111 1110|1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Sign bit: 0

Exponent: −1 + 1023 = 1022 thus 011 1111 1110

Mantissa: 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

d) To convert fixed-point to floating-point representation, we need to calculate the sign
bit, exponent bits, and mantissa bits. Follow the steps shown below:

1. Normalize the fixed-point representation by shifting the binary point to the right
of leftmost 1

2. The mantissa is the entire binary string after the binary point

3. Calculate the exponent bits by adding the bias of 127 to the power of 2

4. Convert exponent to unsigned binary representation

5. If the number is positive, the sign bit is zero, otherwise it is 1

i) 01101.0010 = +1.1010 01 · 23 ⇒ E = (127 + 3)10 = (1000 0010)2 ⇒
0|1000 0010|101 0010 0000 0000 0000 0000

ii) 11010.1101 = −1.0101 101 · 23 ⇒ E = (127 + 3)10 = (1000 0010)2 ⇒
1|1000 0010|010 1101 0000 0000 0000 0000

iii) 01111.1111 = +1.1111 111 · 23 ⇒ E = (127 + 3)10 = (1000 0010)2 ⇒
0|1000 0010|111 1111 0000 0000 0000 0000

iv) 11001.1001 = −1.0011 001 · 23 ⇒ E = (127 + 3)10 = (1000 0010)2 ⇒
1|1000 0010|001 1001 0000 0000 0000 0000
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Number Systems

[Exercise 8] Precision Math of Floating- and Fixed-point Represent-
ation

* Unless otherwise stated, consider two’s complement.

a) Resolution is defined as the minimum difference between two consecutive num-
bers. So, it is equal to the difference between the smallest nonzero number and zero. In
fixed-point representation, resolution becomes equal to the smallest nonzero number
because zero can be represented as (0.0)2. In IEEE 754 floating-point representation,
however, zero has a special representation (1.0)2 ·2−127. So, the difference (=resolution)
is not same as the smallest nonzero number. IEEE 754 specifies two ways of represent-
ing fractional numbers:
(I) single-precision with one sign bit, eight exponent bits, and 23 bits for fraction
(II) double-precision with one sign bit, 11 exponent bits, and 52 bits for fraction.
Consider (0.0)10 and infinity does not exist.
For both the formats, answer the following questions:
i) What is the range of values that can be represented?
ii) What is the resolution of the representation?

b) All the fractional numbers in decimal format cannot be represented using floating-
point representation. For example, if you consider 0.1, then you will see that you can-
not represent this number exactly using the IEEE 754 floating-point single-precision
representation. The IEEE 754 floating-point single-precision representation closest
to 0.1 is 00111101110011001100110011001101 and this representation exceeds 0.1 by
1.4901 × 10−9. The magnitude of difference between the true value in decimal format
and its representation in floating-point is defined as round-off error.

Considering rounding off to the nearest representation (and to even when there
is a tie), find the round-off error when using a sign-and-magnitude floating-point
representation with one sign bit, two exponent bits, and four fraction bits for the
following numbers.

Hint: Floating-point representation = (−1)sign × (1 + fraction) × 2exponent−bias , and
bias = 2k−1 − 1 where k is the number of bits for the exponent)

i) 3.5625 ii) 3.9 iii) -0.52 iv) -0.67

c) Similar to the previous question, all the fractional numbers in decimal format cannot
be represented using fixed-point representation. Again, for example, if you consider
0.1, then you will see that you cannot represent this number exactly using fixed-point
representation with 4 integer bits and 4 decimal bits. Since you cannot represent the
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number exactly, you can use the number closest to 0.1 which will be represented as
0000.00102.

For each fractional number below, provide the fixed-point representation, which has
four integer bits in two’s complement, and four fractional bits, and is closest to the
given decimal representation.

i) 7.2 ii) -6.42 iii) -3.67 iv) 5.33

d) Calculate the resolution and range of fixed-point representation in sign-and-
magnitude form with one sign bit, 8 bits for the integer part and 23 bits for the
fractional part.
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[Solution 8] Precision of Floating- and Fixed-point Representation

a)

i) Single-precision: 1 sign bit, 8 exponent bits, and 23 bits for fraction
The range can be computed as follows (considering infinity and (0.0)10 doesn’t
exist):

(a) In 32-bit floating-point representation, the exponent bits can represent val-
ues from [0, 255]. To represent negative and positive exponents, a value of
127 is subtracted from the exponent bits. Therefore, the value of exponents is
in the range of [−127, 128] (if we were not ignoring infinity and (0.0)10, then
−127 and 128 would hold a special value of 0.010 and infinity, respectively).
As a result, the maximum value of exponent we get is 2128.

(b) The maximum value of fractional part is when all mantissa bits are 1, which
implies the value of coefficient will be (1 + 2−1 + 2−2 · · ·+ 2−23). The sum of
the values can be calculated using the formula for geometric series (Link for
formula). After applying the formula, we get (2− 2−23).

(c) Putting sign, exponent, and mantissa together, we get 2128 · (2− 2−23).

(d) Rearranging the terms, we get 2105(224 − 1).

(e) Similarly, the minimum value can be calculated by just changing the sign
bit. As a result, the minimum value we get is −2105(224 − 1).

(f) Range of values: [−(224 − 1) · 2105, (224 − 1) · 2105]

Range = (224 − 1) · 2106

Resolution is the difference between the smallest nonzero number
(1.000 0000 0000 0000 0000 0001 · 20−127) and the representation of zero, which is
1.0 ·2−127. As a result, the difference is equal to (1+2−23) ·2−127−1.0 ·2−127 = 2−150.

ii) Double-precision: one sign bit, 11 exponent bits, and 52 bits for fraction
Similar to single-precision, we can compute the maximum for double-precision
format (considering (0.0)10 and infinity doesn’t exist):
1.1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 · 2211−1−1023 =
(253 − 1) · 2972
Range of values: [−(253 − 1) · 2972, (253 − 1) · 2972]
Range = (253 − 1) · 2973

Resolution is the difference between the smallest nonzero number
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(1.0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 · 20−1023) and
the representation of zero, which is 1.0 · 2−1023. As a result, the difference is equal
to (1 + 2−52) · 2−1023 − 1.0 · 2−1023 = 2−1075.

b) To find the roundoff error when using a sign-and-magnitude floating-point repres-
entation with one sign bit, two exponent bits, and four fraction bits, follow the follow-
ing steps:

i) (3.5625)10

(a) 3.5625 can be represented as 11.1001

(b) Normalize 11.1001 by shifting binary point to the right of left most 1, as a
result, we get 1.11001 · 21

(c) Given number is positive, sign bit is 0

(d) bias = 22−1 − 1 = 1

(e) exponent− bias = 1 ⇒ exponent = 2

(f) Convert exponent to binary form: 102
(g) mantissa = 11001 so mantissa belongs to [1100, 1100 + 0001] = [1100, 1101]

(considering 4 bits)

(h) Rounding mantissa to nearest value gives us 1100. Note that there is a tie so
we need to round to even. Generally, We took the max of the interval when
the n + 1th bit is 1; otherwise, we would have taken the min of the interval.
Note, in the case of negative numbers, if the n + 1th bit was one, we would
have taken the min of the interval. Similarly, you can think of this as adding
(r−f )/2 which is 2−(f+1) for r = 2.

(i) Thus, the final result of the conversion is 0|10|1100 which equals 1.112 ×
(22−1) = 11.12 = 3.5, since we ”lost” a bit while rounding during the conver-
sion.

Round-off error = |3.5625− 3.5| = 0.0625.

Note: For the rest of the subquestions, the interval containing the number is
calculated in floating-point representation and then the roundoff error is shown.

ii) (3.9)10 ∈ [0|10|1111, 0|11|0000] ⇒ Round-off error = 3.9− 3.875 = 0.025

iii) (−0.52)10 ∈ [1|00|0001, 1|00|0000] ⇒ Round-off error = |−0.52+0.53125| = 0.01125

iv) (−0.67)10 ∈ [1|00|0110, 1|00|0101] ⇒ Round-off error = |−0.67+0.65625| = 0.01375
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c) Provide the fixed-point representation, which has four integer bits, and four frac-
tional bits, and is closest to the given decimal representation.

i) (7.2)10 ∈ [(0111.0011)2, (0111.0100)2] ⇒ the number closest to (7.2)10 is 0111.0011

ii) (−6.42)10 ∈ [(1001.1001)2, (1001.1010)2] ⇒ the number closest to (−6.42)10 is
1001.1001

iii) (−3.67)10 ∈ [(1100.0101)2, (1100.0110)2] ⇒ the number closest to (−3.67)10 is
1100.0101

iv) (5.33)10 ∈ [(0101.0101)2, (0101.0110)2] ⇒ the number closest to (5.33)10 is
0101.0101

d) Resolution for fixed-point representation is 2−f , where f is the number of fractional
bits. In this case, we have 23 fractional bits, therefore, the resolution is 2−23.

The range is the difference between the most positive and the most negative number.
The most positive number is with sign bit set to 0 and all other bits set to 1, which
equals to the sum of (28 − 1) from the integer part and (1 − 2−23) from the fractional
part. The most negative number is with sign bit set to 1 and all other bit set to 1, which
is same as the most positive number but with a negative sign. Therefore, range is equal
to 2 ∗ ((28 − 1) + (1− 2−23)) = 29 − 2−22.
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[Exercise 9] Arithmetic Operations on Fractional Numbers

a) In Table 9, given the following fractional numbers in decimal format, fill in the
IEEE 754 single-precision (SP) representation for each number and compute their sum.
Then, verify if the sum of the IEEE 754 representations matches the sum of the original
decimal numbers.

A B SP(A) SP(B) A + B SP(A) + SP(B)
0.125 0.25
-0.375 0.5
0.625 0.75
-0.875 -1.0
1.125 -1.25

Table 9: Addition in floating point representation

b) In Table 10, given the following fractional numbers in decimal format, fill in the
fixed-point (FiP) representation with four integer bits in two’s complement form and
four fractional bits. Compute the sum of the fixed-representations. Verify if the sum of
the fixed-point representations matches the sum of the original decimal numbers.

A B FiP(A) FiP(B) A + B FiP(A) + FiP(B)
1.125 3.25
-4.375 6.5
2.625 -7.75
-0.875 -1.125
6.25 -3.875

Table 10: Addition in fixed point representation
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[Solution 9] Arithmetic Operations on Fractional Numbers

a) Let’s say A and B are two single-precision floating point numbers to be added, and
A has a larger exponent than B, follow the below steps to solve the sub-questions:

1. Subtract the exponent of A by the exponent of B (you obtain a number the differ-
ence d)

2. Shift right the significand of B by d

3. Add or Subtract the significands (depending on sign bits) and keep the resulting
sign bit

4. Normalize the result by shifting and round off if necessary

Let’s do it on the first example:

1. SP (A) = 0|0111 1100|000 0000 0000 0000 0000 0000

2. SP (B) = 0|0111 1101|000 0000 0000 0000 0000 0000

3. B has a larger exponent than A, therefore, d = −2− (−3) = 1

4. A = (1.0)2 · 2−3 after shifting A = (0.1)2 · 2−2

5. B = (1.0)2 · 2−2

6. A+B = (1.1)2 · 2−2

7. Normalization is already done, and no rounding is required thus SP (A) +
SP (B) = 0|0111 1101|100 0000 0000 0000 0000 0000

Here are all the conversions:

Decimal Single-Precision
0.125 0|0111 1100|000 0000 0000 0000 0000 0000
0.25 0|0111 1101|000 0000 0000 0000 0000 0000

−0.375 1|0111 1101|100 0000 0000 0000 0000 0000
0.5 0|0111 1110|000 0000 0000 0000 0000 0000
0.625 0|0111 1110|010 0000 0000 0000 0000 0000
0.75 0|0111 1110|100 0000 0000 0000 0000 0000

−0.875 1|0111 1110|110 0000 0000 0000 0000 0000
−1.0 1|0111 1111|000 0000 0000 0000 0000 0000
1.125 0|0111 1111|001 0000 0000 0000 0000 0000
−1.25 1|0111 1111|010 0000 0000 0000 0000 0000
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And here are the additions:

Decimal Single-Precision
0.375 0|0111 1101|100 0000 0000 0000 0000 0000
0.125 0|0111 1100|000 0000 0000 0000 0000 0000
1.375 0|0111 1111|011 0000 0000 0000 0000 0000
−1.875 1|0111 1111|111 0000 0000 0000 0000 0000
−0.125 1|0111 1100|000 0000 0000 0000 0000 0000

You will notice with 32 bits, the sum of decimal numbers matches the sum from
floating-point format.

b) Here are all the conversions:

Decimal Fixed Point
1.125 0001.0010
3.25 0011.0100

−4.375 1011.1010
6.5 0110.1000
2.625 0010.1010
−7.75 1000.0100
−0.875 1111.0010
−1.125 1110.1110
6.25 0110.0100

−3.875 1100.0010

And here are the additions:

Decimal Fixed-Point
4.375 0100.0110
2.125 0010.0010
−5.125 1010.1110
−2 1110.0000
2.375 0010.0110

You will notice with 4 bits of integer part and 4 bits of fractional part, the sum of
decimal numbers matches the sum from fixed-point format.
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[Exercise 10] Round-Off Error in Floating-Point Numbers

a) Consider x and y as the IEEE 754 single-precision representations of 12.345 and
0.00012345, respectively.

i) Calculate x+ y in IEEE 754.
ii) What is the round-off error of x+ y?
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[Solution 10] Round-Off Error in Floating-Point Numbers

a) First, we must find x and y by converting the decimal numbers to IEEE 754 single-
precision numbers.

x = 0 | 10000010 | 10001011000010100011111
y = 0 | 01110010 | 00000010111001001011011

i) x+ y can be computed from the values we obtained in these steps:

• First, we must find the exponent values. For x, the value is 130 − bias = 130 −
127 = 3. Repeating for y, we find −13.

• To align the exponents for addition, we adjust y’s mantissa to match x’s exponent
value which is 3. For this, y’s mantissa must be shifted right by 3 − (−13) = 16
digits. Note that we can skip the first step, as we only need the difference between
two exponents: 130− bias− (114− bias) = 16.

• After alignment, y’s mantissa becomes 0.000000000000000100000010111001001011011.
We must add this to x’s mantissa, 1.10001011000010100011111.

• The result is 1.100010110000101101000000111001001011011 which does not
require normalization, but must be rounded. The rounded result is
1.10001011000010110100000.

• The leading 1 is hidden again to give us 10001011000010110100000. The exponent
is calculated as 3 + bias = 3 + 127 = 130 which is represented as 10000010. The
sign bit is zero throughout our addition.

• Final result:
0 | 10000010 | 10001011000010110100000

ii) The round-off error is equal to the difference between the represented value and the
actual value.

• The represented value is 0 | 10000010 | 10001011000010110100000, which is equal
to 2130−127 × 1.10001011000010110100000. In decimal: 12.345123291015625

• The actual value: 12.345 + 0.00012345 = 12.34512345

• Round-off error is calculated as follows:

|12.345123291015625− 12.34512345| = 1.58984376× 10−7
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Part II: Digital Logic and Design with
Verilog

[Exercise 1] Truth Tables

a) Consider a digital logic circuit with n inputs and a single output. How many truth
table entries are required to fully represent the functionality of this circuit?

b) Consider a truth table describing the functionality of a digital logic circuit. Could
this truth table equally correctly describe another digital circuit? In other words, can
two logic circuits implemented differently (i.e., with a different combination of gates)
have the same truth table or not?

c) Show the truth tables for the two logic circuits below, and compare them. What can
you tell about these two logic circuits from the truth table comparison?

i) ii)

d) Consider now a much more complex logic circuit illustrated below. It takes three
inputs and produces two outputs. Construct the truth table for this circuit. Hint: To
make your task simpler, we advise you include in the table the data corresponding to
the intermediate values labeled as p1, p2, p3, and p4.
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[Solution 1] Truth Tables

a) A circuit with n inputs and one output is fully represented with a truth table con-
taining all possible input value combinations. As every input can take on two values
(zero or one), the truth table contains 2n entries.

b) Yes, one truth table can describe the functionality of different digital logic circuits.

In digital circuits, a truth table represents the relationship between inputs and outputs.
It shows all possible combinations of inputs along with the corresponding outputs but
does not put any limitations on the implementation of the circuit itself. In other words,
it is just a way of identifying the behavior (expected output) of the black box circuit
when different inputs are applied.

An example of having one truth table representing two different digital logic circuits
is given in the subsequent question (c).

c) The way to get the truth table for any circuit is to supply all possible inputs to it
and see the corresponding output for each combination of inputs. The truth tables are
shown below. They are identical, even though the two circuits are different. Hence,
the circuits implement the same logic function.

i)

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

ii)

x1 x2 g
0 0 1
0 1 1
1 0 1
1 1 0

d)

p2 = x1 · x2

p1 = p2 · (x1 + x2)

p3 = p1 · x3

p4 = p1 + x3

f = p2 + p3

g = p3 · p4
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The truth table is shown below.

x1 x2 x3 p1 p2 p3 p4 f g
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1
0 1 0 1 0 0 1 0 1
0 1 1 1 0 1 1 1 0
1 0 0 1 0 0 1 0 1
1 0 1 1 0 1 1 1 0
1 1 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1 1
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[Exercise 2] Logical Expressions and Boolean Algebra

a) Find the Boolean expressions describing the functionality of the circuits below.

i) ii)

iii)

b) Using Boolean algebra transformations, simplify the following logical expressions.

i) f = ab(b̄c+ ac)

ii) f = ab+ a(b+ c) + b(b+ c)

iii) f = (a+ b̄+ c̄)(a+ b̄+ c)(a+ b+ c̄)

c) Use Boolean algebra transformations to verify the correctness of the logical equal-
ities below. In every step, specify the transformation (i.e., the exact axiom, theorem,
property) applied.

i) a+ bc = (a+ b)(a+ c)

ii) (a+ b)(a+ b̄) = a
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[Solution 2] Logical Expressions and Boolean Algebra

a)
i) To get the algebraic/Boolean expression for a circuit consisting of multiple gates, you
start by getting the Boolean expression for each individual gate. This circuit contains
3 different types of gates: NOT, OR, AND gates. Let the intermediate outputs be
O1, O2, O3 (marked in red in the figure below).

1. Get the Boolean expression for the top NOT gate: O1 = a

2. Get the Boolean expression for the bottom NOT gate: O2 = c

3. Get the Boolean expression for the OR gate: O3 = O1 + b

4. Substitute for O1 in (3) with its expression in (1): O3 = a+ b

5. Get the Boolean expression for the AND gate: f = O3 ·O2

6. Substitute for O3 in (5) with its expression in (4) and for O2 in (5) with its expres-
sion in (2): f = (a+ b) · c

ii) Following the same techniques as in (i), the Boolean expression is expressed as
follows: f = a+ b · c
iii) Again following the same technique, f = (b+ c) · a+ b

b)
i)

f = ab(b̄c+ ac)

= abb̄c+ abac (x · x = x)

= abb̄c+ abc (x · x = 0)

= 0 + abc

= abc
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ii)
f = ab+ a(b+ c) + b(b+ c)

= ab+ ab+ ac+ bb+ bc (x+ x = x;x · x = x)

= ab+ ac+ b+ bc

= ac+ b · (a+ 1 + c) (x+ 1 = 1)

= ac+ b · 1
= ac+ b

iii)

f = (a+ b̄+ c̄)(a+ b̄+ c)(a+ b+ c̄)

= a(a+ b̄+ c)(a+ b+ c̄) + b̄(a+ b̄+ c)(a+ b+ c̄) + c̄(a+ b̄+ c)(a+ b+ c̄)

using x = x · x, we can write a = a · a, b̄ = b̄ · b̄, and c̄ = c̄ · c̄

= a(a+ b̄+ c)a(a+ b+ c̄) + b̄(a+ b̄+ c)b̄(a+ b+ c̄) + c̄(a+ b̄+ c)c̄(a+ b+ c̄)

= (aa+ ab̄+ ac)(aa+ ab+ ac̄) + (ab̄+ b̄b̄+ b̄c̄)(ab̄+ bb̄+ b̄c̄) + (ac̄+ b̄c̄+ cc̄)(ac̄+ bc̄+ c̄c̄)

using x · x = x;x · x = x;x · x = 0

= (a+ ab̄+ ac)(a+ ab+ ac̄) + (ab̄+ b̄+ b̄c̄)(ab̄+ 0 + b̄c̄) + (ac̄+ b̄c̄+ 0)(ac̄+ bc̄+ c̄)

= a(1 + b̄+ c)a(1 + b+ c̄) + b̄(a+ 1 + c̄)b̄(a+ c̄) + c̄(a+ b̄)c̄(a+ b+ 1)

using x+ 1 = 1;x · x = x

= aa+ b̄(a+ c̄) + c̄(a+ b)

using x · x = x

= a+ b̄(a+ c̄) + c̄(a+ b)

= a+ ba+ bc̄+ ca+ cb

= a(1 + b+ c) + b(c+ c)

using x+ 1 = 1;x+ x = x

= a+ b̄c
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c)
i) The proof is as follows.

(a+ b) · (a+ c) = aa+ ac+ ab+ bc (x · x = x)

= a+ ac+ ab+ bc

= a(1 + c+ b) + bc (x+ 1 = 1)

= a · 1 + bc

= a+ bc

ii) The proof is as follows.

(a+ b) · (a+ b̄) = aa+ ab+ ab̄+ bb̄ (x · x̄ = 0)

= a+ ab+ ab̄+ 0

= a(1 + b+ b̄) (x+ 1 = 1)

= a · 1
= a
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[Exercise 3] Logic Networks

a) A circuit that controls a given digital system has three inputs: x1, x2, and x3. It has
to recognize three different conditions:

• Condition A is true if x3 is true and either x1 is true or x2 is false.

• Condition B is true if x1 is true and either x2 or x3 is false.

• Condition C is true if x2 is true and either x1 is true or x3 is false.

Please note that for clauses with “either or“ use an OR gate. For example, for either x1

is true or x2 is false, we can write (x1 + x2).

The control circuit must produce an output of 1 if at least two of the conditions A,
B, and C are true. Design a simple circuit that can be used for this purpose. Hint:
start by defining logic expressions for each of the conditions. Apply Boolean algebra
transformations to reduce the circuit size. The final circuit should not use more than
three basic logic gates (AND/OR/NOT).

b) NAND gates

i) Show the truth table for a 3-input NAND gate.

ii) Using only the basic logic gates (AND/OR/NOT) with one or two inputs, draw a
logic circuit equivalent to a three-input NAND gate.

iii) Using only the basic logic gates (AND/OR/NOT) with one or two inputs, draw a
logic circuit equivalent to a four-input NAND gate.

c) An n-input XOR gate implements the following logical function:

• The output is 1 when it has an odd number of ones at the input.

• The output is 0 when it has an even number of ones at the input. Zero is con-
sidered an even number.

i) Show the truth table for a three-input XOR gate.

ii) Draw a logic circuit implementing the functionality of the three-input XOR logic
gate, using only the basic logic gates (AND/OR/NOT). In this question, the number
of inputs of the basic logic gates is not limited to one or two only.
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[Solution 3] Logic Networks

a) Using 1 for true and 0 for false, we can express the three conditions as follows:

A = x3 (x1 + x̄2) = x3x1 + x3x̄2

B = x1 (x̄2 + x̄3) = x1x̄2 + x1x̄3

C = x2 (x1 + x̄3) = x2x1 + x2x̄3

Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These
product terms can be determined as:

AB = (x3x1 + x3x̄2) (x1x̄2 + x1x̄3)

= x3x1x1x̄2 + x3x1x1x̄3 + x3x̄2x1x̄2 + x3x̄2x1x̄3

= x3x1x̄2 + 0 + x3x̄2x1 + 0

= x1x̄2x3

AC = (x3x1 + x3x̄2) (x2x1 + x2x̄3)

= x3x1x2x1 + x3x1x2x̄3 + x3x̄2x2x1 + x3x̄2x2x̄3

= x3x1x2 + 0 + 0 + 0

= x1x2x3

BC = (x1x̄2 + x1x̄3) (x2x1 + x2x̄3)

= x1x̄2x2x1 + x1x̄2x2x̄3 + x1x̄3x2x1 + x1x̄3x2x̄3

= 0 + 0 + x1x̄3x2 + x1x̄3x2

= x1x2x̄3

Therefore, f can be written as

f = x1x̄2x3 + x1x2x3 + x1x2x̄3

= x1x̄2x3 + x1x2x3 + x1x2x3 + x1x2x̄3 [using x+ x = x]

= x1 (x̄2 + x2)x3 + x1x2 (x3 + x̄3)

= x1x3 + x1x2

= x1 (x3 + x2)

Figure 1 shows the circuit for f = x1 · (x2 + x3).

b)
i) Table 11 represents three-input NAND gate.
ii) The truth table shown in Table 11 represents a gate which is the opposite of a 3-input
AND gate. An equivalent Boolean expression would be (a · b · c). Using associativity,
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Figure 1: The circuit representing f = x1 · (x2 + x3).

a b c f
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Table 11: Truth table for three-input NAND

we can rewrite this as ((a · b) · c), and draw a circuit with three logic gates as shown in
Figure 2.

iii) To construct a four-input NAND gate, we can write (a · b · c · d) as (a · b) · (c · d)
using the associative property. As a result, we can use two two-input AND gates to
compute (a · b) and (c · d), and use another AND gate to compute the product of (a · b)
and (c · d). Finally, an inverter at the end can be used to get the complement. See
Figure 3 for the final circuit.

c)
i)

a b c f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 12: Truth table for three input XOR gate.
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Figure 2: The circuit representing three-input NAND.

Figure 3: The circuit representing four-input NAND gate.

ii) To get the circuit for three-input XOR gate, start by writing the Boolean expression
using the truth table shown in Table 12. Write the product of inputs for which the
output is 1 in the truth table, and then sum these products. As a result, we get
(a · b · c) + (a · b · c) + (a · b · c) + (a · b · c). The calculated expression can be expressed
using four three-input AND gates and one four-input OR gate, as shown in Figure 4.
Note that to get the complement of an input you can pass it through an inverter.

Figure 4: The circuit representing three-input XOR logic gate.
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[Exercise 4] Timing Diagrams

a) Draw timing diagrams for the circuit shown in Figure 5. Assume the input sequence
is the same as in the corresponding truth table (i.e., (abc) = {000, 001, 010, ..., 111}).
Show the waveforms at the inputs, the internal connections (p1, p2, p3, p4), and the
outputs.

Figure 5: A three-input, one-output logic circuit.

b) Draw timing diagrams for the below circuit. Assume the input sequence is the same
as in the corresponding truth table (i.e., (abc) = {000, 001, 010, ..., 111}). Show the
waveforms at the inputs, the internal connections (p1, p2, p3, p4), and the outputs.

Figure 6: A three-input, one-output logic circuit.
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[Solution 4] Timing Diagrams

a) To draw any timing diagram, apply square waves to inputs such that you get the
same input sequence as in the truth table.

Figure 7: Timing diagram for the logic circuit.

b) Similarly to the previous question, apply square waves to inputs such that you get
the same input sequence as in the truth table.

Figure 8: Timing diagram for the logic circuit.
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[Exercise 5] Venn Diagrams

Use Venn diagrams to verify the correctness of the logical equalities below. Show the
Venn diagrams of the intermediate steps.

a) Distributive property x+ yz = (x+ y)(x+ z)

b) DeMorgan’s theorem (i.e., x · y = x̄+ ȳ)

c) (x1 + x2 + x3) · (x1 + x2 + x̄3) = x1 + x2
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[Solution 5] Venn Diagrams

a) The Venn diagrams corresponding to the Left Hand Side (LHS) and the Right Hand
Side (RHS) are shown in Fig. 9. As they are identical, the equality of the two logical
expressions is proven correct.

Figure 9: Venn diagram illustrating the distributive property.
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b) The Venn diagrams corresponding to the Left Hand Side (LHS) and the Right Hand
Side (RHS) are shown in Fig. 10. As they are identical, the equality of the two logical
expressions is proven correct.

Figure 10: Venn diagram illustrating the De Morgan’s theorem.
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c) The Venn diagrams corresponding to the Left Hand Side (LHS) and the Right Hand
Side (RHS) are shown in Fig. 11. As they are identical, the equality of the two logical
expressions is proven correct.

Figure 11: Venn diagram corresponding to (x1 + x2 + x3) · (x1 + x2 + x̄3) = x1 + x2.
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[Exercise 6] Logic Gates in Logisim

a) Consider the digital logic circuit shown in Figure 12, constructed using Logisim-
evolution. The circuit consists of NOT, AND, and OR gates, along with two input pins
a and b on the left and one output pin f on the right.

Figure 12: A two-input, one-output logic circuit.

i) Build the same circuit in Logisim-evolution and then use Logisim’s “poke” (hand)
tool to change the values of the input pins. Subsequently, construct the circuit’s truth
table by observing and noting down how different combinations of input values affect
the output.

ii) Logisim has a library of predefined logic gates, which can be found in the explorer
pane on the left, on the Design tab, under the Gates folder. Which of these gates
share the same truth table as the circuit above? Verify whether the truth table matches
by interacting with the gate’s inputs.

b) In Logisim, construct the digital logic circuits corresponding to the two expressions
given below. Then, compare the outputs of the two circuits to determine whether the
circuits implement the same function.

Hint: The number of inputs to a gate can be configured from the properties pane at the
bottom-left.

Hint: You can connect the same three input pins to both circuits. This way, you only
need to change inputs once in order to compare both outputs.

i) f = (a+ b) c+ ābc̄

ii) g = ac+ b̄c+ ābc̄
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[Solution 6] Logic Gates in Logisim

a) i) By trying each combination of values for the input pins a and b, and recording the
corresponding value of the output pin f , we arrive at the truth table shown in Table 13:

a b f
0 0 1
0 1 0
1 0 0
1 1 1

Table 13: A truth table with two inputs and one output.

ii) The same truth table is shared by the XNOR gate shown in Figure 13:

Figure 13: A two-input XNOR logic gate.

b) The two circuits f and g are not equivalent. One counterexample is when a = 0, b =
0, c = 1. For the full schematic of the circuit, see Figure 14.
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Figure 14: A circuit with three inputs and two outputs.
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[Exercise 7] Adders/Subtractors in Logisim-evolution

Note: Before solving this exercise, it will be helpful to watch the online tutorial on
Subcircuits in Logisim-evolution: [Click on this Link].

a) 1-bit addition

i) Realize a half adder in Logisim-evolution using logic gates (AND, OR, NOT, or XOR).
By configuring the inputs to various binary combinations, verify the half-adder’s cor-
rect functionality.

Suggestion: Create a subcircuit (in Logisim-evolution terms) so that you can easily
replicate the half adder later.

ii) Realize a full-adder in Logisim-evolution using half adders. By configuring the in-
puts to various binary combinations, verify the full-adder’s correct functionality.

Suggestion: Create a subcircuit (in Logisim-evolution terms) so that you can easily
replicate the full-adder later.

b) Ripple-Carry Adders

i) Realize a 4-bit ripple-carry adder by replicating the full-adder subcircuit created in
question a-ii (in Logisim-evolution terms) and connecting them appropriately.

ii) So far, we assumed logic gates take virtually no time to compute the output given
the inputs. However, in practice, real gates do take some time to compute the output:
we refer to that time as gate delay.

Consider the gates have the following delays: d(NOT) = 1 ns, d(AND) = 2 ns, d(OR) =
2 ns, and d(XOR) = 3 ns. Assuming the inputs to be added are available at the same
time (e.g., time 0 ns) and that delays of wires connecting the gates can be neglected,
compute the worst-case delay of the 4-bit ripple-carry adder, in nanoseconds. If instead
of the 4-bit ripple-carry adder you had an 8-bit ripple-carry adder, how would the
worst-case delay change?
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c) Adders/Subtractors

i) 1-bit addition/subtraction: Design a circuit that can perform 1-bit addition or sub-
traction in two’s complement format (ADDSUB). This circuit should have an additional
input op, which controls the type of operation performed as follows:

• op = 1: ADDSUB performs addition;

• op = 0: ADDSUB performs subtraction.

Hint: You are free to reuse full-adder subcircuit built earlier.

ii) Using the full-adder circuit, realize a 4-bit ripple-carry adder/subtractor and verify
its correct operation by applying a few combinations of inputs and setting the control
signal op appropriately.
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[Solution 7] Adders/Subtractors in Logisim-evolution

a) i) A half-adder circuit is shown in Figure 15.

Figure 15: A half-adder circuit.

ii) A full-adder circuit is shown in Figure 16.

Figure 16: A full-adder circuit.

b) i) A 4-bit ripple-carry adder circuit is shown in Figure 17.

Figure 17: A 4-bit ripple-carry adder circuit.

ii)

d(NOT) = 1 ns, d(AND) = 2 ns, d(OR) = 2 ns, and d(XOR) = 3 ns

Consider the Figure 18, which has the paths listed below:
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Figure 18: A gate-level view of the full-adder circuit.

Maximum delay between inputs (x and y) and sum (s): t(x, s) = t(y, s) = 2 · t(XOR) =
6 ns

Maximum delay between inputs (x and y) and carry out (c out): t(x, c out) = t(XOR)+
t(AND) + t(OR) = 7 ns

Maximum delay between carry input (c in) and carry out (c out): t(c in, c out) =
t(AND) + t(OR) = 4 ns

Maximum delay between carry input (c in) and sum (s): t(c in, s) = t(XOR) = 3 ns

The critical path of a full-adder circuit is the path that produces the maximum delay,
and in this case it is the path from inputs (x and y) to carry out (c out) with delay 7 ns.

With the given gate delays, the critical path of the 4-bit ripple carry adder is the path
that ripples the carry from the first adder to the last, as shown in Figure 19. The total
delay for n-bit ripple-carry adder can be written as t(x, c out) + (n− 2) · t(c in, c out) +
max(t(c in, c out), t(c in, s)), where the first term represents the delay from first full-
adder, second term represents the delay from second adder to second last adder, and
the third term represents the delay from the last adder. In our case, delay from first
adder is 7 ns, delay from the second adder to the second last adder is 2 · 4 ns, and the
delay from the last adder 4 ns, which results in a total delay of 7 ns+(4−2)·4 ns+4 ns =
19 ns.

In case of an 8-bit ripple carry adder, the total critical path delay would be 7 ns+ (8−
2) · 4 ns+ 4 ns = 35 ns, which is higher than the 4-bit ripple carry adder.
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Figure 19: The critical path of the 4-bit ripple adder circuit.

c) i) An ADDSUB circuit is shown in Figure 20.

Figure 20: An ADDSUB circuit.

ii) A 4-bit ripple-carry ADDSUB circuit is shown in Figure 21.
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Figure 21: A 4-bit ripple-carry ADDSUB circuit.
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[Exercise 8] Sum of Products and Product of Sums

a) Write the logical expression for each of the following truth tables in both canonical
SoP and canonical PoS forms.

i)

a b c f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

ii)

a b c f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

b) Write the logical expression for each of the following algebraic functions in both
canonical SoP and canonical PoS forms.

Hint: To convert an algebraic function to its canonical form, start by expanding it using
the distributive property and Boolean theorems (e.g., x · x = 0, x + x = 1). Moreover,
you can convert one canonical form to the other by using the minterms and maxterms.

i) f = a(bc+ bc+ bc) + abc ii) f = a+ a(a+ b)(b+ c)

c) Design and draw a circuit diagram for each of the logical expressions you found in
parts a and b. Use the simpler one of the SoP and PoS representation while designing
the circuit. In other words, use SoP representation if it results in a fewer number of
gates than PoS, and vice versa. If both representations require the same number of
gates, you can use either version. You can only use AND, OR, and NOT gates with
any number of inputs.
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[Solution 8] Sum of Products and Product of Sums

a) The simplest way to create the Sum of Products from a truth table is to look at the
rows where the output is 1 and write down the product of the literals in those rows,
and sum all the product terms. For example, the first row in the truth table given in
part i has the output 1, and the product of the literals in that row is abc. This term will
be present in the Sum of Products.

For the Product of Sums, look at the rows where the output is 0 in a truth table and
write down the sum of the inverted literals in those rows, and multiply all the sum
terms. For example, the second row in the truth table given in part i has the output 0,
and the sum of the inverted literals in that row is a+ b+ c. This term will be present in
the Product of Sums.

i)

Sum of Products: abc+ abc+ abc+ abc
Product of Sums: (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

ii)

Sum of Products: abc+ abc+ abc
Product of Sums: (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

b) The technique for converting an algebraic function to its sum of products form is
to use distributive property to expand the function into a sum of products and remove
redundant terms. You might need to expand some terms into their minterms to have
the canonical form.

There are multiple ways to get product of sums form. One way is getting the sum
of products form and using maxterm indices that are not present in the minterms of
sum of products. Another way is using complements and De Morgan’s Theorem. The
sum of product and product of sums are complementary representations of each other.
Therefore, using the complements and De Morgan’s theorem, you can convert a sum
of products to a product of sums and vice versa. In other words, f = (f) which means
if we find the sum of products form of f we can convert it to product of sums form by
taking the complement and using De Morgan’s theorem.

Creating truth tables and using them to find the sum of products and product of sums
forms is another way of doing this.
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i)

Sum of products:

f = a(bc+ bc+ bc) + abc

= abc+ abc+ abc+ abc (Distributive Property)

Product of sums:

The sum of products has the following minterms: m1,m3,m2,m7. The missing min-
terms are m0,m4,m5,m6. Therefore, the product of sums should include the maxterms
M0,M4,M5,M6.
Therefore, the product of sums is (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

ii)

Sum of products:

f = a+ a(a+ b)(b+ c)

= a+ (aa+ ab)(b+ c) (Distributive Property)

= a+ (a+ ab)(b+ c) (x · x = x)
= a+ a(b+ c) (x+ xy = x)
= a+ ab+ ac (Distributive Property)

= a(b+ b)(c+ c) + ab(c+ c) + a(b+ b)c (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

= abc+ abc+ abc+ abc+ abc+ abc+ abc (x+ x = x)

Product of Sums: We can use the missing minterms in the SoP form to find the max-
terms in the PoS form. The only missing minterm is m5. Therefore, the product of sums
should include the maxterm M5. Therefore, the product of sums is a + b + c. Or you
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can use the algebraic manipulations to get PoS form as shown below.

f = a+ a(a+ b)(b+ c)

f = a+ a(a+ b)(b+ c) (Inverting Both Sides)

f = a · (a+ (a+ b) + (b+ c)) (De Morgan’s Theorem)

f = a · (a+ ab+ bc) (De Morgan’s Theorem)

f = a · (a+ bc) (x+ xy = x)

f = aa+ abc (Distributive Property)

f = 0 + abc (x · x = 0)

f = abc (x+ 0 = x)

f = (abc) (Inverting Both Sides)
f = a+ b+ c (De Morgan’s Theorem)

c)

i) Circuit for question a, subquestion i. The SoP and PoS circuits require the same
number of gates for the given truth table, so we can use both of the forms. We choose
to use the SoP form. We are using an AND gate for each minterm and an OR gate to
combine the minterms. The sum of products from is abc + abc + abc + abc. The circuit
is given below. To simplify the visualization, all inputs of AND gates are ordered as
a, b, c and the wires are colored red if they are complemented. The circuit is given in
Figure 22.

Figure 22: Circuit for question a, subquestion i.
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ii) Circuit for question a, subquestion ii. Following the same reasoning in the previous
question, we find the SoP form to be the smaller circuit, so we will draw the circuit for
abc+ abc+ abc. The circuit is given in Figure 23.

Figure 23: Circuit for question a, subquestion ii.
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iii) Circuit for question b, subquestion i. The sum of products and product of sums
have the same number of gates, so we can use both of the forms. We choose to use the
sum of products form, i.e., abc+ abc+ abc+ abc. The circuit is given in Figure 24.

Figure 24: Circuit for question b, subquestion i.

iv) Circuit for question b, subquestion ii. The PoS version have the smaller number of
gates, so we will use the that form, i.e., a+ b+ c. The circuit is given in Figure 25.

Figure 25: Circuit for question b, subquestion ii.
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[Exercise 9] Canonical Form Comparison

The canonical forms of a logical expression is a unique representation of the expression.
That means we can check and compare the equality of two expressions by comparing
their canonical forms.

Using canonical SoP or PoS form, determine whether or not the following expressions
are valid. In other words, determine whether the left- and right-hand sides represent
the same function.

Hint: To convert an algebraic function to its canonical form, start by expanding it using
the distributive property and Boolean theorems (e.g., x · x = 0, x+ x = 1).

a) a c+ bc+ ab = ab+ ac+ bc

b) ac+ abc+ ab+ ab = bc+ ac+ bc+ abc

c) ac+ bc+ bc =
(
a+ b+ c

)
(a+ b+ c) (a+ b+ c)

d) (a+ c)
(
a+ b+ c

)
(a+ b) = (a+ b) (b+ c) (a+ c)
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[Solution 9] Canonical Form Comparison

a) The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for
each side and see if the truth tables are the same. An algebraic approach is to derive a
canonical sum of products form for each expression and compare them.

LHS = a c+ bc+ ab

= a
(
b+ b

)
c+ (a+ a) bc+ ab (c+ c) (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively. For the
right-hand side we have

RHS = ab+ ac+ bc

= ab (c+ c) + a
(
b+ b

)
c+ (a+ a) bc (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both
expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by

∑
m(0, 2, 3, 4, 5, 7).

b)
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LHS = ac+ abc+ ab+ ab

= a(b+ b)c+ abc+ ab(c+ c) + ab(c+ c) (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

= abc+ abc+ abc+ abc+ abc+ abc (x+ x = x)

=
∑

m(1, 2, 3, 4, 5, 6)

RHS = bc+ ac+ bc+ abc

= (a+ a)bc+ a(b+ b)c+ (a+ a)bc+ abc (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

= abc+ abc+ abc+ abc+ abc+ abc (x+ x = x)

=
∑

m(1, 2, 3, 4, 5, 6)

Both expressions have the same minterms, so they represent the same function. There-
fore, the equation is valid.

c)

LHS = ac+ bc+ bc

= a(b+ b)c+ (a+ a)bc+ (a+ a)bc (x · 1 = x)

= abc+ abc+ abc+ abc+ abc+ abc (Distributive Property)

= abc+ abc+ abc+ abc+ abc (x+ x = x)

=
∑

m(0, 3, 4, 6, 7)

RHS = (a+ b+ c)(a+ b+ c)(a+ b+ c)

=
∏

M(1, 2, 5) (PoS Form)

=
∑

m(0, 3, 4, 6, 7)

Both expressions have the same minterms, so they represent the same function. There-
fore, the equation is valid.

d)
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LHS = (a+ c)(a+ b+ c)(a+ b)

= (a+ bb+ c)(a+ b+ c)(a+ b+ cc) (x+ 0 = x)

= ((a+ b)(a+ b) + c)(a+ b+ c)(a+ (b+ c)(b+ c)) (Distributive Property)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c) (Distributive Property)

=
∏

M(0, 2, 4, 5, 7)

RHS = (a+ b)(b+ c)(a+ c)

= (a+ b+ cc)(aa+ b+ c)(a+ bb+ c) (x+ 0 = x)

= (a+ (b+ c)(b+ c))((a+ b)(a+ b) + c)((a+ b)(a+ b) + c)
(Distributive Property)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)
(Distributive Property)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c) (x · x = x)

=
∏

M(0, 1, 4, 5, 7)

The maxterms for the left-hand side and right-hand side are different, so the equation
is not valid.
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[Exercise 10] Design with NAND and NOR gates

NAND and NOR gates are called universal gates because they can be used to imple-
ment any Boolean function. You can refer to the Wikipedia page for NAND logic [link]
to see how some gates can be formed using only NAND gates. And similarly for the
NOR logic [link].

a) Design and draw circuit diagrams for the following functions using only NAND
gates with any number of inputs. Please note that there could be many solutions and
we do not require a minimum gate solution.

i)

a b c f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

ii)

iii) f = abc+ abc+ abc+ abc

b) Repeat the previous question using only NOR gates with any number of inputs.
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[Solution 10] Design with NAND and NOR gates

a) You can implement this function using AND, OR, and NOT gates and then convert
it into NAND gates using the transformations in Figure 26.

Figure 26: The transformations from NOT, AND, and OR gates to NAND gates.

You can either use these visual transformations or use the algebraic transformations to
convert the given function into a circuit that only has NAND gates.

i) The algebraic method is shown below.

f =
∑

m(1, 2, 4, 7)

= abc+ abc+ abc+ abc

= (abc+ abc+ abc+ abc) (x = x)

= (abc) · (abc) · (abc) · (abc) (DeMorgan’s Theorem)
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Now, we show the visual method. The function is f = abc + abc + abc + abc. A simple
circuit for this function is given in Figure 27.

Figure 27: The circuit for the function f = abc+ abc+ abc+ abc.

Then, we can use the OR transformation to eliminate the OR gate and get the circuit
in Figure28.

Figure 28: The circuit diagram after replacing the last OR gate.
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Finally, we can merge AND gates with the NOT gates, and convert NOT gates into
NAND gates to get the following circuit that only has NAND gates. The final circuit
is shown in Figure 29.

Figure 29: The final circuit diagram for function f = abc+ abc+ abc+ abc.

ii) The function f = (ab+ cd) + ((a+ b)(c+ d)) can be construced from the circuit. The
algebraic method to obtain NAND only expression is shown below.

f = (ab+ cd) + ((a+ b) · (c+ d))

= (ab+ cd) + ((a+ b) · (c+ d)) (x = x)

= (ab+ cd) · ((a+ b) · (c+ d)) (DeMorgan’s Theorem)

= (ab+ cd) · ((a+ b) · (c+ d)) (x = x)

= ((ab) · (cd)) · (ab) · (cd) (DeMorgan’s Theorem)
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The final circuit with only NAND gates is shown in Figure 30.

Figure 30: Circuit diagram for f = ab+ cd+ (a+ b)(c+ d) using only NAND gates.

iii) The algebraic method to obtain NAND only expression is shown below.

f = abc+ abc+ abc+ abc

= abc+ abc+ abc+ abc (x = x)

= (abc) · (abc) · (abc) · (abc) (DeMorgan’s Theorem)

The final circuit is shown in Figure 31.

Figure 31: Circuit diagram for f = abc+ abc+ abc+ abc using only NAND gates.
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b) Similarly, we will use the transformations in Figure32 to convert the given function
into a circuit that only has NOR gates. Please note that these circuits are not unique.
There are multiple ways to implement the same function using NOR gates.

Figure 32: Transformations from NOT, OR, and AND gates to NOR gates.

i) Using product of sums form is easier for NOR gates. That is why we will use PoS
representation to start with. The algebraic method to obtain NOR only expression is
shown below.

f =
∏

M(0, 3, 5, 6)

f = (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

f = (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c) (x = x)

f = (a+ b+ c) + (a+ b+ c) + (a+ b+ c) + (a+ b+ c) (DeMorgan’s Theorem)
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The final circuit is shown in Figure 33.

Figure 33: The circuit diagram for f = (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c) using
only NOR gates.

ii) The function is f = (ab + cd) + ((a + b)(c + d)). The algebraic transformations to
convert the given function into a circuit that only has NOR gates is shown below.

f = (ab+ cd) + ((a+ b)(c+ d))

f = (ab+ cd) + ((a+ b)(c+ d)) (x = x)

f = ((a+ b) + (c+ d)) + ((a+ b) + (c+ d)) (DeMorgan’s Theorem)

f = ((a+ b) + (c+ d)) + ((a+ b) + (c+ d)) (x = x)
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The final circuit using only NOR gates is shown in Figure 34.

Figure 34: Circuit diagram for the circuit in question a subquestion ii using only NOR
gates.

iii) Again, to simplify the process, we will use the PoS form. The function is f =
abc+ abc+ abc+ abc. The algebraic method is shown below.

f = abc+ abc+ abc+ abc

=
∑

m(3, 4, 6, 7)

=
∏

M(0, 1, 2, 5)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c) (x = x)

= (a+ b+ c) + (a+ b+ c) + (a+ b+ c) + (a+ b+ c) (DeMorgan’s Theorem)
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And the final circuit using only NOR gates is shown in Figure 35.

Figure 35: Circuit diagram for f = abc+ abc+ abc+ abc using only NOR gates.
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[Exercise 11] 7-Segment Display

Consider a circuit that drives a 7-segment display shown in Fig. 36. Its operation can
be described as follows:

• The circuit has 4 inputs (W, X, Y, and Z) and 7 outputs (a, b, c, d, e, f, and g).

• Each of the outputs controls one segment of the display. The segment is switched
on (i.e., it is lit) if the signal controlling it is high (i.e., logic 1). Otherwise, the
segment is switched off.

• The display shows the decimal digit corresponding to the binary number formed
by the inputs WXYZ. For example, if the inputs are WXYZ = (0110)2, the dis-
play shows the decimal digit 6. When the inputs take a combination higher than
(1001)2 (i.e., 910), the output can be considered a don’t care condition and, thus,
be arbitrarily defined. Fig. 37 visualizes how decimal digits are shown on the
display.

Figure 36: Seven-segment display.

Figure 37: Decimal digits shown on the display.
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a) Assume now that, when the inputs take a combination higher than (1001)2 (i.e., 910),
the display shows nothing: all segments of the display are switched off.

i) Give the truth table for the digital logic circuit.

ii) The minimized (i.e., optimized) SoP forms for all seven outputs are given below.
Starting from the canonical SoP forms for outputs b and c, perform Boolean algebra
transformations to reduce the complexity of your expressions until you reach the min-
imized SoP forms.

Optional: You are encouraged to perform Boolean algebra transformations on the
canonical SoP forms describing other outputs, and design and test your circuit in
Logisim-evolution.

a = WX Y +WXZ +W X Z +WY

b = W X +WY Z +W Y Z +X Y

c = WX +WZ +X Y

d = WX Y +WXY Z +W XY +W X Z +WY Z

e = WY Z +X Y Z

f = WX Y +WXY +WXZ +W Y Z

g = WX Y +WXY +WXZ +W XY

b) Assume now that the input combinations higher than (1001)2 (i.e., 910) generate
outputs listed in Table 14.

Table 14: Alternative output signals for input combinations higher than (1001)2.

W X Y Z a b c d e f g
1 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1

i) Give the truth table for the digital logic circuit.

ii) The minimized SoP forms for all seven outputs are given below. Starting from the
canonical SoP forms for outputs b and c, perform Boolean algebra transformations to
reduce the complexity of your expressions until you reach the minimized SoP forms.
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Optional: You are encouraged to perform Boolean algebra transformations on the ca-
nonical SoP forms describing other outputs as well.

a = X Z + Y +XZ +W

b = X + Y Z + Y Z

c = Y + Z +X

d = X Z +XY + Y Z +XY Z +W

e = X Z + Y Z

f = Y Z +XY +XZ +W

g = XY +XY +XZ +W

iii) Compare the complexity (e.g., number of gates, number of gate inputs) of the
digital circuits corresponding to the minimized SoP forms in this and the previous
question. Discuss the reasons behind the differences.

iv) In Logisim-evolution, implement the digital logic circuit that controls the 7-
segment display and test it. You can make use of the 7-segment display module inside
Logisim-evolution.
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[Solution 11] 7-Segment Display

a) i) The truth table for the circuit described in the question is given in Table 15.

Table 15: Truth table for 7-segment display

W X Y Z a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

ii) We will start from the canonical SoP forms and then apply Boolean algebra trans-
formations to simplify the logic expressions.

82 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 11
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

b = W X Y Z +W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W X Y +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY +WXY Z +WXY Z +WX Y Z +WX Y Z (xy + xy = x)

= W X Y +W XY +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X +W X Y Z +WXY Z +WXY Z +WX Y (x = x+ xy)

= W X +W Y Z +WXY Z +WX Y (xy + xy = x)

= W X +W XY Z +W Y Z +WXY Z +WX Y (x = x+ xy)

= W X +W Y Z +WY Z +WX Y (xy + xy = x)

= W X +W X Y +W Y Z +WY Z +WX Y (x = x+ xy)

= W X +W Y Z +WY Z +X Y (xy + xy = x)

c = W X Y Z +W X Y Z +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z

= W X Y +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY Z +WXY +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY Z +WXY +WXY +WX Y Z +WX Y Z (xy + xy = x)

= W X Y +W XY Z +WXY +WXY +WX Y (xy + xy = x)

= W X Y +W XY Z +WX +WX Y (xy + xy = x)

= X Y +W XY Z +WX (xy + xy = x)

= X Y +W X Y Z +W XY Z +WX (x = x+ xy)

= X Y +W XZ +WX (xy + xy = x)

= X Y +W XZ +WX +WXZ (x = x+ xy)

= X Y +WZ +WX (xy + xy = x)
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b) i) The truth table for the circuit described in the question is given in Table 16.

Table 16: Truth table for 7-segment display

W X Y Z a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
1 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1

ii) We will start from the canonical SoP forms and then apply Boolean algebra trans-
formations to simplify the logic expressions.

b = W X Y Z +W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y +W XY +WXY Z +WXY Z +WX Y +WXY +WXY Z +WXY Z
(xy + xy = x)

= W X +WXY Z +WXY Z +WX +WXY Z +WXY Z (xy + xy = x)

= X +WXY Z +WXY Z +WXY Z +WXY Z (xy + xy = x)

= X +W Y Z +WY Z +WY Z +WY Z (x+ xy = x+ y)

= X + Y Z + Y Z (xy + xy = x)
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c = W X Y Z +W X Y Z +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z

+WX Y Z +WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y +W XY Z +WXY +WXY +WX Y +WXY Z +WXY +WXY
(xy + xy = x)

= W X Y +W XY Z +WX +WX Y +WXY Z +WX (xy + xy = x)

= W X Y +W XY Z +X +WX Y +WXY Z (xy + xy = x)

= W Y +WY Z +X +WY +WY Z (x+ xy = x+ y)

= Y +WY Z +X +WY Z (xy + xy = x)

= Y +WZ +X +WZ (x+ xy = x+ y)

= Y + Z +X (xy + xy = x)

iii) We can observe that the corresponding logic circuit is of significantly lower com-
plexity than the circuit obtained in the previous question. The reason this implement-
ation is more efficient lies in a better choice for don’t care conditions (the outputs corres-
ponding to the inputs higher than digit 9). This example demonstrates how don’t care
conditions allow obtaining more efficient circuit implementations.

iv) The 7-segment display driver circuit implementation in Logisim-evolution is given
in the figures below.
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[Exercise 12] 7-Segment Display (Extended version)

a) You are required to design a circuit that drives a 7-segment display shown in Fig. 38.
The design should satisfy the following criteria:

• The circuit has 4 inputs (W, X, Y, and Z) and 7 outputs (a, b, c, d, e, f, and g).

• Each of the outputs controls one segment of the display. The segment switches
on (i.e., lights up) if the signal controlling it is high (i.e., logic 1).

• The display should show the decimal digit corresponding to the binary number
formed by the inputs WXYZ. For example, if the inputs are WXYZ = 0110, the
display should show the decimal digit 6. You can assume that the inputs will
never take a combination higher than 1001 (i.e., decimal digit 9). If the inputs
take a combination higher than 1001 (i.e., 9), the display should show nothing:
all segments of the display should be switched off.

Figure 38: Seven-segment display.

i) Give the truth table for the digital logic circuit.

ii) Starting from the canonical SoP forms for all seven outputs, perform Boolean al-
gebra transformations to reduce, as much as you can, the complexity of your circuit.

Note: You’re encouraged to design and test your circuit in Logisim-evolution.
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b) Repeat the same exercise, but this time use the outputs in Table 17 for input com-
binations higher than 1001 (i.e., 9). Compare the complexity of the digital logic circuit
you implemented in this and the previous question. Discuss the differences.

Note: You’re encouraged to design and test your circuit in Logisim-evolution.

Table 17: Alternative output signals for input combinations higher than 1001.

W X Y Z a b c d e f g
1 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1

Version 1.0 of 26th May 2025, EPFL ©2025 89 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Solution 12
Digital Logic and Design with Verilog

[Solution 12] High Level Design

a) i)

W X Y Z a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

ii) We will start from the canonical SoP forms and then apply Boolean algebra trans-
formations to simplify the logic expressions.

a = W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W X Y Z +W XY +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY +WX Y Z +WX Y Z (xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY +WX Y (xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY Z +WXY +WX Y (x = x+ xy)

= W X Y Z +W XY +WXZ +WXY +WX Y (xy + xy = x)

= W X Y Z +WY +WXZ +WX Y (xy + xy = x)

= W X Y Z +WY +W XY Z +WXZ +WX Y (x = x+ xy)

= W X Z +WY +WXZ +WX Y (xy + xy = x)
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As an example, we show below the circuit diagram for output a.

b = W X Y Z +W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W X Y +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY +WXY Z +WXY Z +WX Y Z +WX Y Z (xy + xy = x)

= W X Y +W XY +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X +W X Y Z +WXY Z +WXY Z +WX Y (x = x+ xy)

= W X +W Y Z +WXY Z +WX Y (xy + xy = x)

= W X +W XY Z +W Y Z +WXY Z +WX Y (x = x+ xy)

= W X +W Y Z +WY Z +WX Y (xy + xy = x)

= W X +W X Y +W Y Z +WY Z +WX Y (x = x+ xy)

= W X +W Y Z +WY Z +X Y (xy + xy = x)
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c = W X Y Z +W X Y Z +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z

= W X Y +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY Z +WXY +WXY Z +WXY Z +WX Y Z +WX Y Z
(xy + xy = x)

= W X Y +W XY Z +WXY +WXY +WX Y Z +WX Y Z (xy + xy = x)

= W X Y +W XY Z +WXY +WXY +WX Y (xy + xy = x)

= W X Y +W XY Z +WX +WX Y (xy + xy = x)

= X Y +W XY Z +WX (xy + xy = x)

= X Y +W X Y Z +W XY Z +WX (x = x+ xy)

= X Y +W XZ +WX (xy + xy = x)

= X Y +W XZ +WX +WXZ (x = x+ xy)

= X Y +WZ +WX (xy + xy = x)

d = W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X Y Z +W XY +W XY Z +WXY Z +WXY Z +WX Y (x = x+ xy)

= W X Z +W XY +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X Z +W XY +W XY Z +WXY Z +WXY Z +WX Y (x = x+ xy)

= W X Z +W XY +WXY Z +WY Z +WX Y (xy + xy = x)

e = W X Y Z +W XY Z +WXY Z +WX Y Z

= X Y Z +W XY Z +WXY Z (xy + xy = x)

= X Y Z +WY Z (xy + xy = x)
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f = W X Y Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W X Y Z +WXY Z +WXY Z +WXY Z +WX Y (xy + xy = x)

= W X Y Z +WXZ +WXY Z +WX Y (xy + xy = x)

= W X Y Z +WXZ +WXY Z +WXY Z +WX Y (x = x+ xy)

= W X Y Z +WXZ +WXY +WX Y (xy + xy = x)

= W X Y Z +WXZ +WXY +WXY Z +WX Y (x = x+ xy)

= W Y Z +WXZ +WXY +WX Y (xy + xy = x)

g = W XY Z +W XY Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

= W XY Z +W XY Z +WXY +WXY Z +WX Y Z +WX Y Z (xy + xy = x)

= W XY Z +W XY Z +WXY +WXY Z +WX Y (xy + xy = x)

= W XY +WXY +WXY Z +WX Y (xy + xy = x)

= W XY +WXY +WXY Z +WXY Z +WX Y (x = x+ xy)

= W XY +WXY +WXZ +WX Y (xy + xy = x)

The resulting simplified algebraic equations are summarized below.

a = WX Y +WXZ +W X Z +WY

b = W X +WY Z +W Y Z +X Y

c = WX +WZ +X Y

d = WX Y +WXY Z +W XY +W X Z +WY Z

e = WY Z +X Y Z

f = WX Y +WXY +WXZ +W Y Z

g = WX Y +WXY +WXZ +W XY
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b) i)

W X Y Z a b c d e f g
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1 0 1 1
1 0 1 0 1 1 0 1 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 0 1 1 1 1 0 1 1
1 1 0 1 1 0 1 1 0 1 1
1 1 1 0 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1

ii)

a = W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y Z +W XY +WXY Z +WXY +WX Y +WXY +WXY +WXY
(xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY +WX +WX (xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY +W (xy + xy = x)

= X Y Z +XY +XY Z +XY +W (x+ xy = x+ y)

= X Y Z + Y +XY Z +W (xy + xy = x)

= X Z + Y +XZ +W (x+ xy = x+ y)
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b = W X Y Z +W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y +W XY +WXY Z +WXY Z +WX Y +WXY +WXY Z +WXY Z
(xy + xy = x)

= W X +WXY Z +WXY Z +WX +WXY Z +WXY Z (xy + xy = x)

= X +WXY Z +WXY Z +WXY Z +WXY Z (xy + xy = x)

= X +W Y Z +WY Z +WY Z +WY Z (x+ xy = x+ y)

= X + Y Z + Y Z (xy + xy = x)

c = W X Y Z +W X Y Z +W XY Z +WXY Z +WXY Z +WXY Z +WXY Z

+WX Y Z +WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y +W XY Z +WXY +WXY +WX Y +WXY Z +WXY +WXY
(xy + xy = x)

= W X Y +W XY Z +WX +WX Y +WXY Z +WX (xy + xy = x)

= W X Y +W XY Z +X +WX Y +WXY Z (xy + xy = x)

= W Y +WY Z +X +WY +WY Z (x+ xy = x+ y)

= Y +WY Z +X +WY Z (xy + xy = x)

= Y +WZ +X +WZ (x+ xy = x+ y)

= Y + Z +X (xy + xy = x)
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d = W X Y Z +W XY Z +W XY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

+WXY Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y Z +W XY +WXY Z +WXY Z +WX Y +WXY +WXY +WXY
(xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY Z +WX +WX (xy + xy = x)

= W X Y Z +W XY +WXY Z +WXY Z +W (xy + xy = x)

= X Y Z +XY +XY Z +XY Z +W (x+ xy = x+ y)

= X(Y Z + Y ) +XY Z +XY Z +W (Distributive Property)

= X(Z + Y ) +XY Z +XY Z +W (x+ xy = x+ y)

= X Z +XY +XY Z +XY Z +W (Distributive Property)

= X Z + Y (X +XZ) +XY Z +W (Distributive Property)

= X Z + Y (X + Z) +XY Z +W (x+ xy = x+ y)

= X Z +XY + Y Z +XY Z +W (Distributive Property)

e = W X Y Z +W XY Z +WXY Z +WX Y Z +WXY Z +WXY Z

= X Y Z +XY Z +XY Z (xy + xy = x)

= X Z +XY Z (xy + xy = x)

= Z(X +XY ) (Distributive Property)

= Z(X + Y ) (x+ xy = x+ y)

= X Z + Y Z (Distributive Property)
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f = W X Y Z +WXY Z +WXY Z +WXY Z +WX Y Z +WX Y Z

+WXY Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W X Y Z +WXY +WXY Z +WX Y +WXY +WXY +WXY (xy + xy = x)

= W X Y Z +WXY +WXY Z +WX +WX (xy + xy = x)

= W X Y Z +WXY +WXY Z +W (xy + xy = x)

= X Y Z +XY +XY Z +W (x+ xy = x+ y)

= X Y Z +X(Y + Y Z) +W (Distributive Property)

= X Y Z +X(Y + Z) +W (x+ xy = x+ y)

= X Y Z +XY +XZ +W (Distributive Property)

= Y (X Z +X) +XZ +W (Distributive Property)

= Y (Z +X) +XZ +W (x+ xy = x+ y)

= Y Z +XY +XZ +W (Distributive Property)

g = W XY Z +W XY Z +WXY Z +WXY Z +WXY Z +WX Y Z

+WX Y Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z +WXY Z

= W XY +WXY +WXY Z +WX Y +WXY +WXY +WXY (xy + xy = x)

= W XY +WXY +WXY Z +WX +WX (xy + xy = x)

= W XY +WXY +WXY Z +W (xy + xy = x)

= XY +XY +XY Z +W (x+ xy = x+ y)

= XY +X(Y + Y Z) +W (Distributive Property)

= XY +X(Y + Z) +W (x+ xy = x+ y)

= XY +XY +XZ +W (Distributive Property)

Version 1.0 of 26th May 2025, EPFL ©2025 97 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Solution 12
Digital Logic and Design with Verilog

The resultant simplified algebraic equations are summarized below. We can observe
that the corresponding logic circuit is of significantly lower complexity than the circuit
obtained in the previous question. The reason this implementation is more efficient
lies in a better choice for don’t care conditions (the outputs corresponding to the inputs
higher than digit 9). This example demonstrates how don’t care conditions allow ob-
taining more efficient circuit implementations.

a = X Z + Y +XZ +W

b = X + Y Z + Y Z

c = Y + Z +X

d = X Z +XY + Y Z +XY Z +W

e = X Z + Y Z

f = Y Z +XY +XZ +W

g = XY +XY +XZ +W
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[Exercise 13] Timing Hazards

a) Consider the circuit in Figure 39.

Figure 39: A digital circuit.

i) Derive the Boolean expression for the output f in terms of the inputs a, b, and c.

ii) Assume an ideal scenario where gates have no delay. Fill the timing diagram in
Figure 40 for the circuit in Figure 39.

Figure 40: The timing diagram.

iii) Now consider the same circuit and input signals, but each gate has a delay of 1 time
unit. Each dotted vertical line shows one (single) time unit. Fill the timing diagram in
Figure 40 for the circuit in Figure 39. Is the output correct at all times? If not, identify
the reason for the incorrect output.
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b) Now consider the circuit in Figure 41.

Figure 41: A digital circuit.

i) Derive the Boolean expression for the output f in terms of the inputs a, b, and c. Is
this expression functionally equivalent to the expression you obtained in question a?

ii) Assume an ideal scenario where gates have no delay. Fill the timing diagram in
Figure 42 for the circuit in Figure 41.

Figure 42: The timing diagram.

iii) Now consider the same circuit and input signals, but each gate has a delay of 1
time unit. Fill the timing diagram in Figure 42 for the circuit in Figure 41. Is the output
correct at all times? If not, identify the reason for the incorrect output.
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[Solution 13] Timing Hazards

a)

i) The Boolean expression for the output f in terms of the inputs a, b, and c is:

p1 = c

p2 = a · p1
p3 = b · c
f = p2 + p3

= a · c+ b · c

ii) The timing diagram with zero delay gates for the circuit in Figure 39 is shown in
Figure 43.

Figure 43: The timing diagram without any delay.
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iii) The timing diagram with one time-unit delay for each gate is shown in Figure 44.

Figure 44: The timing diagram with delays.

At time t = 4, the output has a glitch because the output changes from 1 to 0 and then
back to 1. There are two parallel data paths from input c to the output and the delays of
these paths are different. Glitches like these (also called timing hazards) typically occur
when the inputs change from one product term to another and there is a difference in
delay these product terms take to generate the output.

b)

i) The Boolean expression for the output f in terms of the inputs a, b, and c is:

p1 = c

p2 = a · p1
p3 = b · c
p4 = a · b
f = p2 + p3 + p4

= a · c+ b · c+ a · b
= a · c+ b · c+ a · b · (c+ c) (x · 1 = x)
= a · c+ b · c+ a · b · c+ a · b · c (Distributive Property)
= a · c · (1 + b) + b · c · (1 + a) (Distributive Property)
= a · c+ b · c (1 + x = 1)

The expression is functionally equivalent to the one obtained in question (a).
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ii) The timing diagram with zero delay gates for the circuit in Figure 41 is shown in
Figure 45.

Figure 45: The timing diagram without delays.

iii) The timing diagram with one time-unit delay for each gate is shown in Figure 46.

Figure 46: The timing diagram with delays.

There are no glitches in the output. The output is correct at all times. The redundant
term a · b in the Boolean expression helps to eliminate the glitches in the output while
c transitions: the redundant term generates a signal independent of c, that keeps the
output unaffected by the glitch created by c transitions.

Note: In general, avoiding hazards is not a trivial task. It requires careful design and
analysis of the circuit. However, a well-designed, synchronous digital system is struc-
tured so that hazard analysis is not needed for most of its elements. In a synchronous
system, all inputs to a combinational circuit, such as the one we analyzed earlier, are
changed at a particular time, and the outputs are not looked at until they have had time
to settle to a steady-state (i.e., glitch-free) value.
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[Exercise 14] Logic Circuit Propagation Delay

Consider the following circuit. The inputs become available at t = 0. If any logic gate
drives a load capacitance of Cload = 1 fF, its propagation delay is 10 ns. The capacitance
of an input of a logic gate depends on the total number of inputs of that gate (i.e., of its
fan-in). Assume that the following holds:

• the capacitance of an input of the NOT gate is 1 fF,

• the capacitance of an input of a two-input gate (AND or OR) is 2 fF, and

• the capacitance of an input of a three-input gate (AND or OR) is 3 fF.

Finally, the load capacitance of the final OR gate is 1 fF.

a) Compute the delay of every gate. Find the worst-case delay (the critical path delay)
of the circuit, in nanoseconds.

b) Which path is the critical path? Highlight in red the critical path in the circuit. If
there are multiple paths with the same delay, color them all.
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[Solution 14] Logic Circuit Propagation Delay

a)

Note: Recall that, when a logic gate drives a load capacitance of Cload = 1 fF, its
propagation delay is 10 ns.

The inverter is driving an input of a two-input OR gate (wire p1), which has the capa-
citance of 2 fF. Therefore, the inverter delay is 2fF × 10ns

1fF
= 2× 10ns = 20ns.

The inverter is driving an input of a three-input AND gate (wire p2), which has the
capacitance of 3 fF. Therefore, the inverter delay is 3× 10ns = 30ns.

The inverter is driving an input of a three-input AND gate (wire p3), which has the
capacitance of 3 fF. Therefore, the inverter delay is 3× 10ns = 30ns.

The OR gate is driving an input of a two-input AND gate (wire p4), which has the
capacitance of 2 fF. Therefore, the OR gate delay is dOR = 2×10ns = 20ns. The OR gate
receives inputs from a and p1. The input from a is available at 0 ns, whereas the input
from p1 becomes available at 20 ns. Therefore, the output of the OR gate (wire p4) will
be ready at time t = dOR +max(0ns, 20ns) = 20ns+ 20ns = 40ns.

The top AND gate is driving an input of a two-input OR gate (wire p5), which has
the capacitance of 2 fF. Therefore, the AND gate delay is 2 × 10ns = 20ns. The AND
gate receives inputs from p4 and c. The signal on p4 becomes ready at 40 ns and c is
available at 0 ns. Therefore, the output of the AND gate (wire p5) will be ready at time
t = 20 + max(40, 0) = 20 + 40 = 60ns.

The bottom AND gate is driving an input of a two-input OR gate (wire p6), which has
the capacitance of 2 fF. Therefore, the AND gate delay is 2 × 10ns = 20ns. The AND
gate receives inputs from p2, b, and p3. The signal on p2 becomes ready at 30 ns, b is
available at 0 ns, and the signal on p3 becomes ready at 30 ns. Therefore, the output of
the AND gate (wire p6) will be ready at time t = 20 + max(30, 0, 30) = 20 + 30 = 50ns.

Finally, the last OR gate drives an output (load) capacitance of 1 fF. Therefore, the OR
gate delay is 1× 10ns = 10ns. The OR gate receives inputs from p5 and p6. The signal
on p5 becomes ready at 60 ns. The signal on p6 becomes ready at 50 ns. Therefore, the
output F will be ready at time t = 10 + max(60, 50) = 10 + 60 = 70ns.
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b)

The circuit has one critical path, highlighted in the figure below.
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[Exercise 15] Multiplexer Design

a) Design an 8-to-1 multiplexer using only 2-to-1 multiplexers.

b) Design an 8-to-1 multiplexer using any combination of 2-to-1 and 4-to-1 multiplex-
ers.
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[Solution 15] Multiplexer Design

a) The inputs of the multiplexer are a, b, c, d, e, f , g, and h. The select lines are x, y and
z. The output is m. The circuit using only 2-to-1 multiplexers is shown in Figure 47.

Figure 47: 8-to-1 multiplexer circuit using only 2-to-1 multiplexers.

b) Combining the last 2 stages of the circuit in Figure 47 using a 4-to-1 multiplexer, we
get the circuit shown in Figure 48.
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Figure 48: 8-to-1 multiplexer circuit using 2-to-1 and 4-to-1 multiplexers.
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[Exercise 16] Dynamic Power Dissipation

a) Find the dynamic power dissipation P1 of a CMOS inverter operated from a
1.05 V supply and having a load capacitance of 100 fF. Let the inverter be switched
at 320 MHz.

b) Given the same inverter as in question a, find the dynamic power P2 assuming the
inverter has a load capacitance of 300 fF. What can you tell about the impact of load
capacitance on dynamic power dissipation?

c) Find the dynamic power dissipation P3 of a CMOS inverter operated from a 1.05 V
supply and having a load capacitance of 100 fF. Let the inverter be switched at 1 GHz.
What can you tell about the impact of switching frequency on dynamic power dissip-
ation?

d) Find the dynamic power dissipation P4 of a CMOS inverter having a load capa-
citance of 100 fF and switching at 320 MHz. Let the inverter be powered from 0.9 V
supply. What can you tell about the impact of power supply on dynamic power dis-
sipation?

110 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 16
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Solution 16] Dynamic Power Dissipation

a) The dynamic power dissipation is given by the equation: P1 = CoutV
2
ddf . Plugging

in the given values, Cout = 100fF = 10−13F , Vdd = 1.05V , and f = 320MHz = 3.2 ×
108Hz, we get P1 = 10−13F × (1.05V )2 × 3.2× 108Hz = 3.528× 10−5W = 35.28µW .

b) Using the same formula with the new capacitance value Cout = 300fF = 3×10−13F ,
we get P2 = 3 × 10−13F × (1.05V )2 × 3.2 × 108Hz = 10.584 × 10−5W = 105.84µW .
The dynamic power P2 tripled with tripled capacitance, compared to P1, because the
dynamic power is directly proportional to the capacitance.

c) Using the same formula with the new frequency value f = 1GHz = 109Hz, we get
P3 = 10−13F×(1.05V )2×109Hz = 1.1025×10−4W = 110.25µW . The dynamic power P3

increased by a factor of 3.125 (i.e., the same factor of increase in frequency) compared
to P1, because it is directly proportional to the frequency.

d) Using the same formula with the new voltage value Vdd = 0.9V , we get P4 =
10−13F × (0.9V )2 × 3.2 × 108Hz = 2.592 × 10−5W = 25.92µW . The dynamic power P4

decreased by a factor of 1.36 compared to P1; the dynamic power is directly propor-
tional to the square of the power supply voltage.
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[Exercise 17] Fanin & Fanout and Propagation Delay

Consider the following circuit. The inputs become available at t = 0. If any logic
gate drives a load capacitance of Cload = 1 fF, its propagation delay is 10 ns. The load
capacitance and therefore the delay of a gate depends on its fanout. If a gate drives
multiple gates, the equivalent load capacitance is the sum of the input capacitance of
each fanout. The capacitance of an input of a logic gate depends on the total number
of inputs of that gate (i.e., of its fan-in). Assume that the following holds:

• the capacitance of an input of the NOT gate is 1 fF,

• the capacitance of an input of a two-input gate (AND or OR) is 2 fF, and

• the capacitance of an input of a three-input gate (AND or OR) is 3 fF.

• the capacitance of an input of a four-input gate (AND or OR) is 4 fF.

For example, if a gate drives one two-input gate and one three-input gate, then the
equivalent load capacitance is Cload = 2 fF + 3 fF = 5 fF and, consequently, the delay
of that gate increases five times: 10× 5 = 50 ns. The load capacitance of the final AND
gate equals 5 fF.

a) Compute the delay of each gate. What is the worst-case delay (the critical path
delay) of the circuit, in nanoseconds?

b) Which path is the critical path? Highlight in red the critical path in the circuit. If
there are multiple paths with the same delay, color them all.
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[Solution 17] Fanin & Fanout and Propagation Delay

a)

The inverter driving wire p1 has a fanout of 2. The first gate is a two input gate while
the second gate is a four input gate. So, the total load capacitance is 2 fF + 4 fF = 6 fF.
Therefore, its propagation delay is 10ns

1fF
× 6fF = 10ns× 6 = 60ns.

The inverter driving wire p2 has a fanout of 1. The gate it drives has 2 inputs, so the
total load capacitance is 2 fF. Therefore, its propagation delay is 10ns× 2 = 20ns.

The inverter driving wire p3 has a fanout of 1. The gate it drives has 4 inputs, so the
total load capacitance is 4 fF. Therefore, its propagation delay is 10ns× 4 = 40ns.

The AND gate driving wire p4 has a fanout of 1. The gate it drives has 3 inputs, so
the total load capacitance is 3 fF. Therefore, its propagation delay is 10ns × 3 = 30ns.
Moreover, it gets its inputs from wires p1 and d. p1 becomes available at 60ns and d
becomes available at 0ns. Therefore, p4 becomes available at time t = max(60ns, 0ns)+
30ns = 90ns.

The AND gate driving wire p5 has a fanout of 2. The first gate it drives has 3 inputs
and the second gate has 3 inputs, so the total load capacitance is 6 fF. Therefore, its
propagation delay is 10ns× 6 = 60ns. Moreover, it gets its inputs from wires a, b, and
d. They all become available at time t = 0ns. Therefore, p5 becomes available at time
t = 60ns.

The AND gate driving wire p6 has a fanout of 2. The first gate it drives has 3 inputs
and the second gate has 3 inputs, so the total load capacitance is 6 fF. Therefore, its
propagation delay is 10ns × 6 = 60ns. Moreover, it gets its inputs from wires p1, b, c,
and p3. p1 becomes available at 60ns, b and c become available at 0ns, and p3 becomes
available at 40ns. Therefore, p6 becomes available at time t = max(60, 0, 0, 40) + 60 =
120ns.

The AND gate driving wire p7 has a fanout of 1. The gate it drives has 3 inputs, so
the total load capacitance is 3 fF. Therefore, its propagation delay is 10ns × 3 = 30ns.
Moreover, it gets its inputs from wires p2, and d. p2 becomes available at 20ns and d
becomes available at 0ns. Therefore, p7 becomes available at time t = max(20, 0)+30 =
50ns.

The OR gate driving wire p8 has a fanout of 1. The gate it drives has 2 inputs, so
the total load capacitance is 2 fF. Therefore, its propagation delay is 10ns × 2 = 20ns.
Moreover, it gets its inputs from wires p4, p5, and p6. p4 becomes available at 90ns, p5
becomes available at 60ns, and p6 becomes available at 120ns. Therefore, p8 becomes
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available at time t = max(90, 60, 120) + 20 = 140ns.

The OR gate driving wire p9 has a fanout of 1. The gate it drives has 2 inputs, so
the total load capacitance is 2 fF. Therefore, its propagation delay is 10ns × 2 = 20ns.
Moreover, it gets its inputs from wires p5, p6, and p7. p5 becomes available at 60ns, p6
becomes available at 120ns, and p7 becomes available at 50ns. Therefore, p9 becomes
available at time t = max(60, 120, 50) + 20 = 140ns.

The final AND gate driving a load capacitance of 5 fF. Therefore, its propagation delay
is 10ns × 5 = 50ns. Moreover, it gets its inputs from wires p8 and p9. Both p8 and
p9 become available at 140ns. Therefore, the output becomes available at time t =
max(140, 140) + 50 = 190ns.

b)
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[Exercise 18] Logic Circuits and Verilog: Gate-Level Modeling

Consider the logic circuit shown in Figure 49. The circuit has three inputs a, b, c, one
output f , and one intermediate wire p (shown here with a Logisim probe).

Figure 49: A simple combinational circuit with three inputs and one output.

Listing 2.1 shows one way of modeling the same circuit in Verilog structurally, at the
gate level. Listing 2.2 shows an example Verilog testbench for simulating the operation
of the circuit.

Listing 2.1: A structural Verilog description of the circuit in Figure 49.
module structural_example (

// Three input signals.
input a,
input b,
input c,
// One output signal.
output f

);

// One intermediate wire.
wire p;

// Two gates specifying name, output, and inputs.
and g1 (p, a, b);
or g2 (f, p, c);

endmodule
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Listing 2.2: Verilog testbench for the circuit in Figure 49.
module test_structural_example;

// Define three inputs that can procedurally
// be assigned values.
reg a, b, c;
// And one output that responds to them.
wire f;

// Connect them to an instance of the module being tested.
structural_example ex (.a(a), .b(b), .c(c), .f(f));

// Loop variable.
integer i;

initial begin
// Write this test's data to a .vcd file
// that GTKWave can read.
$dumpfile ("structural_example.vcd");
$dumpvars;

// Print values whenever they change.
$monitor ("Time %2t, a=%b, b=%b, c=%b, f=%b",

$time, a, b, c, f);

// Exhaust all input combinations,
// each time followed by a delay of 1 time unit.
for (i = 0; i < 8; i += 1) begin

// Each variable gets one bit from i.
// First 0, 0, 0
// then 0, 0, 1, etc.
{a, b, c} = i;
#1;

end

// Done.
$finish;

end

endmodule
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a) Start by creating two files:

• Verilog source file, called structural_example.v, containing the gate-level
model given in Listing 2.1; and

• Verilog testbench file, called structural_example_tb.v, containing the code
for generating various input combinations (see Listing 2.2), so that you can test
the Verilog model of your circuit.

Note: The two files above are also available for download from Moodle.

Run circuit simulation and generate the waveforms. To do so, feel free to follow the
sequence of commands given in Listing 2.3 below. Inspect the timing waveforms to
verify that the Verilog description matches the expected behavior of the logic circuit in
Figure 49.

Listing 2.3: Inspecting the waveform simulation in GTKWave.
$ iverilog -o example structural_example.v \

structural_example_tb.v
$ ./example
$ gtkwave structural_example.vcd

b) Consider a slightly different logic circuit shown in Figure 50, which has three inputs
a, b, c, and one output f . Write a structural (i.e., gate-level) Verilog description of the
circuit. Use only Verilog gate primitives (e.g., not, and, nor).

Simulate your circuit (i.e., generate waveforms to verify its correct operation).
Hint: You can use the same testbench as in the previous question.

Figure 50: A more involved combinational circuit with three inputs and one output.
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c) Recall that a Full-Adder is a one-bit adder that can be realized with two Half-Adders
(see Figure 51). A Full-Adder has three binary inputs and two binary outputs:

• one-bit inputs x, y;

• one-bit input carry-in cin;

• one-bit output s, which is the one-bit binary sum of x+ y; and

• one-bit output carry-out cout.

Figure 51: A logic circuit performing the function of a Full-Adder.

Write a structural (gate-level) Verilog description of a Full-Adder.

i) Variant 1: For a moment, ignore the fact that some gates can be grouped into a Half-
Adder. In other words, make your Full-Adder be entirely described with basic Verilog
gates. Name your module full_adder1 and give it three inputs x, y, cin, and two
outputs s, cout. As before, check that your Verilog model is correct by inspecting
the waveforms in GTKWave. This time, use the testbench file full_adder1_tb.v
(available for download from Moodle).

ii) Variant 2: Create a Verilog module half_adder that describes the functionality
of a Half-Adder using the gate-level modeling approach. Then, use half_adder as
a submodule to simplify the description of your Full-Adder. Name your Full-Adder
module full_adder2 and give it three inputs x, y, cin, and two outputs s, cout.
You can define both modules half_adder and full_adder2 in the same file. Oth-
erwise, if half_adder is in its own file, remember to include that file name as an
argument to iverilog when compiling. As before, check that your Verilog model
is correct by inspecting the waveforms in GTKWave. This time, use the testbench file
full_adder2_tb.v (available for download from Moodle).
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[Solution 18] Logic Circuits and Verilog: Gate-Level Modeling

a) Comparing the circuit in Figure 49 with its structural Verilog model in Listing 2.1
should help to highlight the straightforward means by which one can arrive at one
from the other: first, identify the inputs and outputs; then, the logic gates; and finally
the intermediate wires (other than the input/output ports) that are needed to connect
the gates.

After saving Listing 2.1 as the file structural_example.v and Listing 2.2 as
structural_example_tb.v, and running the commands in Listing 2.3, you should
see the GTKWave output shown in Figure 52.

Figure 52: Testbench waveform for structural example.

b) This circuit is slightly trickier to describe than the example in Figure 49 because of
the negated gate inputs, which require additional wires and not gates. Nevertheless,
the steps involved are largely the same.

Listing 2.4 shows one possible solution. This module is also named
structural_example for convenience, in order to reuse the testbench in List-
ing 2.2 verbatim. Naming gates (e.g., and1, and2) is optional, but here it can help
distinguish the two and gates.
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Listing 2.4: A structural Verilog description of the circuit in Figure 50.
module structural_example (

// Three input signals.
input a, b, c,
// One output signal.
output f

);

// Four intermediate wires.
wire not_a, not_b; // Negated inputs.
wire and1_out, and2_out; // AND gate outputs.

// Negated inputs to AND gates.
not (not_a, a);
not (not_b, b);

// Intermediate AND gates.
and and1 (and1_out, not_a, b);
and and2 (and2_out, not_b, c);

// Output NOR gate.
nor (f, and1_out, and2_out);

endmodule

c) i) Listing 2.5 shows one way of structurally describing a Full-Adder, using only
Verilog gate primitives. It is a relatively straightforward translation of the Full-Adder
schematic in Figure 51, but some care is needed to avoid mistakes and identify which
intermediate wires are needed. Writing gate-level descriptions like this at scale can be
tedious and error-prone, which is why higher-level behavioral descriptions are often
preferred in practice. Running the provided testbench full_adder1_tb.v should
give the printed output in Listing 2.6.
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Listing 2.5: A structural Verilog description of a Full-Adder using gate primitives.
module full_adder1 (

input x, y, cin,
output s, cout

);

// Intermediate wires.
wire s1; // First Half-Adder sum.
wire c1; // First Half-Adder carry.
wire c2; // Second Half-Adder carry.

// First Half-Adder.
xor (s1, x, y);
and (c1, x, y);

// Second Half-Adder.
xor (s, cin, s1);
and (c2, cin, s1);

// Carry-out.
or (cout, c2, c1);

endmodule

Listing 2.6: Testbench output for full adder1.
$ iverilog -o full_adder1 full_adder1.v full_adder1_tb.v
$ ./full_adder1
VCD info: dumpfile full_adder1.vcd opened for output.
Time 0, x=0, y=0, cin=0, s=0, cout=0
Time 1, x=0, y=0, cin=1, s=1, cout=0
Time 2, x=0, y=1, cin=0, s=1, cout=0
Time 3, x=0, y=1, cin=1, s=0, cout=1
Time 4, x=1, y=0, cin=0, s=1, cout=0
Time 5, x=1, y=0, cin=1, s=0, cout=1
Time 6, x=1, y=1, cin=0, s=0, cout=1
Time 7, x=1, y=1, cin=1, s=1, cout=1
full_adder1_tb.v:34: $finish called at 8 (1s)
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ii) Listing 2.7 shows one way of structurally describing the same Full-Adder after ab-
stracting and reusing the Half-Adder as a separate module. Note that, in this case, it
does not matter whether the Half-Adder module is defined in the same or a separate
.v Verilog source file. Running the provided testbench full_adder2_tb.v should
give printed output similar to that in Listing 2.6.

Listing 2.7: A structural Verilog description of a Full-Adder using Half-Adders.
// Reusable Half-Adder module.
module half_adder (

input x, y,
output s, c

);

xor (s, x, y); // Sum.
and (c, x, y); // Carry.

endmodule

// Full-Adder module built upon half_adder.
module full_adder2 (

input x, y, cin,
output s, cout

);

// Intermediate wires.
wire s1; // First Half-Adder sum.
wire c1; // First Half-Adder carry.
wire c2; // Second Half-Adder carry.

// Two Half-Adder instances.
half_adder ha1 (.x(x), .y(y), .s(s1), .c(c1));
half_adder ha2 (.x(cin), .y(s1), .s(s), .c(c2));

// Carry-out.
or (cout, c2, c1);

endmodule

122 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Exercise 19
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Exercise 19] Logic Circuits and Verilog: Behavioral Modeling

a) Recall that an n-to-1 Multiplexer (MUX) is a circuit which takes n+ 1 inputs:

• n data inputs x1, . . . , xn; and

• an m-bit selection signal s whose value determines which of the n data inputs to
select as the circuit’s output.

An example of a 2-to-1 MUX is shown in Figure 53.

Figure 53: A 2-to-1 MUX.

In this question, you are asked to write behavioral Verilog descriptions of multiplexers
using procedural statements (e.g., if-else) instead of structural descriptions using
gates (e.g., and). Recall that procedural code should be wrapped in an always block.
In particular, combinational circuits such as multiplexers can react to all module inputs
by starting the block with the sensitivity list always @*, and they can set variables
using the = blocking assignment operator.

Listing 2.8 shows a basic example of this syntax with a NOT gate.

Listing 2.8: A behavioral Verilog description of a NOT gate.
module behavioral_not (

input a,
// Output declared as a reg variable so that it can
// procedurally be assigned to within always.
output reg f

);
always @* begin

f = ~a; // Executed every time the input changes.
end

endmodule
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i) Write a Verilog description of a 2-to-1 MUX using an if-else statement rather than
gate primitives. Name your module mux_2to1, give it two data inputs x1, x2, a select
input s, and one output f, and save it in a file named mux_2to1.v.

Check that your description is correct by inspecting its waveform in GTKWave. List-
ing 2.9 shows how you can achieve this with the testbench file mux_2to1_tb.v (avail-
able for download on Moodle).

Listing 2.9: Inspecting the 2-to-1 MUX waveform simulation in GTKWave.
$ iverilog -o mux_2to1 mux_2to1.v mux_2to1_tb.v
$ ./mux_2to1
$ gtkwave mux_2to1.vcd

ii) Write a Verilog description of a 3-bit 8-to-1 MUX using a case statement rather than
gate primitives. Name your module mux_8to1. Give it eight 3-bit data inputs x1, . . . ,
x8, a select input s, and one 3-bit output f.

Hint: Recall that the number of select bits in s changes with the number of inputs n.

As before, check that your description is correct by inspecting its waveform in GTK-
Wave. This time, use the testbench file mux_8to1_tb.v (available for download on
Moodle).
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[Solution 19] Logic Circuits and Verilog: Behavioral Modeling

a) i) Listing 2.10 shows one way of describing a 2-to-1 MUX using an if-else state-
ment. Running the provided testbench mux_2to1_tb.v as per Listing 2.9 should give
the printed output in Listing 2.11 and the GTKWave waveforms in Figure 54.

Listing 2.10: A behavioral Verilog description of the circuit in Figure 53.
module mux_2to1 (

// Two data inputs and one selection input.
input x1, x2, s,
// One procedurally assignable reg output.
output reg f

);

// Select x1 when s=0, and x2 when s=1.
always @* begin

f = 0;
if (s == 0) f = x1;
else f = x2;

end

endmodule

Listing 2.11: Testbench output for mux 2to1.
$ iverilog -o mux_2to1 mux_2to1.v mux_2to1_tb.v
$ ./mux_2to1
VCD info: dumpfile mux_2to1.vcd opened for output.
Time 0, sel=0, x1=0, x2=0, out=0
Time 1, sel=0, x1=0, x2=1, out=0
Time 2, sel=0, x1=1, x2=0, out=1
Time 3, sel=0, x1=1, x2=1, out=1
Time 4, sel=1, x1=0, x2=0, out=0
Time 5, sel=1, x1=0, x2=1, out=1
Time 6, sel=1, x1=1, x2=0, out=0
Time 7, sel=1, x1=1, x2=1, out=1
mux_2to1_tb.v:33: $finish called at 8 (1s)
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Figure 54: Testbench waveform for mux 2to1.

ii) Listing 2.12 shows one way of describing a 3-bit 8-to-1 MUX using a case statement.
This is quite similar to the 2-to-1 MUX, except all ports are 3-bit vectors instead of
single bits, and case provides a simpler syntax than if-else for comparing the same
variable against multiple values. Running the provided testbench mux_8to1_tb.v
should give the printed output in Listing 2.13.
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Listing 2.12: A behavioral Verilog description of a 3-bit 8-to-1 MUX.
module mux_8to1 (

// Eight 3-bit data inputs.
input [2:0] x1, x2, x3, x4,
input [2:0] x5, x6, x7, x8,
// One 3-bit selection input.
input [2:0] s,
// One procedurally assignable reg output.
output reg [2:0] f

);

always @* begin
f = 0;
case (s)

// 3 stands for the bit width, b stands for binary.
3'b000: f = x1;
3'b001: f = x2;
3'b010: f = x3;
3'b011: f = x4;
3'b100: f = x5;
3'b101: f = x6;
3'b110: f = x7;
3'b111: f = x8;

endcase
end

endmodule

Listing 2.13: Testbench output for mux 8to1.
$ iverilog -o mux_8to1 mux_8to1.v mux_8to1_tb.v
$ ./mux_8to1
VCD info: dumpfile mux_8to1.vcd opened for output.
Time 0, sel=7, out=7
Time 1, sel=6, out=6
Time 2, sel=5, out=5
Time 3, sel=4, out=4
Time 4, sel=3, out=3
Time 5, sel=2, out=2
Time 6, sel=1, out=1
Time 7, sel=0, out=0
mux_8to1_tb.v:46: $finish called at 8 (1s)
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[Exercise 20] 3-to-8 Binary Decoder

Write a Verilog module for a 3-to-8 binary decoder (Wikipedia article). A binary de-
coder takes a binary input vector and activates one of output bits based on the input
value. The 3-to-8 binary decoder will have an input vector of 3 bits (in[2:0]) and
an output vector of 8 bits (out[7:0]). Each output bit corresponds to one of the pos-
sible binary combinations of the input. For example, a binary input of 010 will output
00000100, where the third bit is set to 1. Table 18 highlights the outputs for all inputs.

in[2] in[1] in[0] out[7] out[6] out[5] out[4] out[3] out[2] out[1] out[0]
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

Table 18: 3-to-8 binary decoder

The module should have the following interface and name:

module binary_decoder (
input [2:0] in,
output reg [7:0] out

);

Hint: Think of using a case statement.

Note: Make sure to use meaningful signal names and adhere to proper Verilog syntax
and coding conventions. Please refer to Verilog HDL Coding - Example of style.
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[Solution 20] 3-to-8 Binary Decoder

The Verilog code for 3-to-8 binary decoder can be found below:

module binary_decoder (
input [2:0] in,
output reg [7:0] out

);

always @* begin
out = 8'b00000000;
case (in)

3'b000: out = 8'b00000001;
3'b001: out = 8'b00000010;
3'b010: out = 8'b00000100;
3'b011: out = 8'b00001000;
3'b100: out = 8'b00010000;
3'b101: out = 8'b00100000;
3'b110: out = 8'b01000000;
3'b111: out = 8'b10000000;
default: out = 8'b00000000; // All outputs off by default

endcase
end

endmodule

Note: Even when all the cases are covered, it is good practice to include default
statement. The default statement helps to cover the case when input is unassigned.

The waveform from GTKWave is shown below:

Figure 55: Waveform for 3-to-8 binary decoder.
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[Exercise 21] Gray Code Encoder

Gray code is a number format where two consecutive decimal numbers in their binary
representation differ by only 1 bit. For example, 1, 2, and 3 are represented as 001, 011,
and 010, respectively (Wiki). A Gray code encoder converts an input binary vector into
its Gray code representation.

Binary Gray code
B2 B1 B0 G2 G1 G0
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

Table 19: Binary to Gray code

Implement a Verilog module gray_encoder that takes as input a three-bit binary
vector (binary_in) and a one-bit select signal (select), and outputs either the input
binary vector unmodified or the Gray code. When the select signal is 0, the module
should output the binary vector received at the input, and when it is 1, the module
should output the Gray code.

The module should have the following interface and name:

module gray_encoder (
input [2:0] binary_in,
input select,
output reg [2:0] out

);

Hint: Use an if-else statement to select between the binary input vector and Gray
code. Use a case statement to select between outputs of Gray code.
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[Solution 21] Gray Code Encoder

The Verilog code for Gray code encoder can be found below:

module gray_encoder (
input [2:0] binary_in,
input select,
output reg [2:0] out

);

always @* begin
out = 3'b000;
if (select == 0) begin

// Output binary value if select is 0
out = binary_in;

end
else begin

// Otherwise, output Gray code value
case (binary_in)

3'b000: out = 3'b000; // Output 000 for input 000
3'b001: out = 3'b001; // Output 001 for input 001
3'b010: out = 3'b011; // Output 011 for input 010
3'b011: out = 3'b010; // Output 010 for input 011
3'b100: out = 3'b110; // Output 110 for input 100
3'b101: out = 3'b111; // Output 111 for input 101
3'b110: out = 3'b101; // Output 101 for input 110
3'b111: out = 3'b100; // Output 100 for input 111
default: out = 3'b000; // Default output 000

endcase
end

end

endmodule

Note: Even when all the cases are covered, it is good practice to include default
statement. The default statement helps to cover the case when input is unassigned.

The waveform from GTKWave is shown below:

Figure 56: Waveform for Gray code encoder.
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[Exercise 22] Absolute Difference Calculator using Comparator

A comparator is a fundamental digital circuit component used to compare two binary
numbers or signals and determine if they are equal to each other or greater than or less
than the other. Wiki.

a) Design a module named comparator that compares two 4-bit inputs A and B. It
should have three output signals: A eq B, A gt B, and A lt B, representing if A is
equal to, greater than, or less than B, respectively.

b) Use the 4-bit comparator module in another module named
absolute_difference_calculator to calculate the absolute difference between
A and B. This module should take inputs A and B and output the result based on the
comparison results. The module should have two 4-bit inputs A and B and one 4-bit
output result. If A is equal to B, output should be 0; if A is greater than B, output
should be A - B; otherwise, output should be B - A.

You can use the following code snippet as a template for your Verilog module:

module absolute_difference_calculator (
// Your code here

);

// Your code here

// Instantiate the comparator module
comparator comp(.A(A), .B(B), .A_eq_B(A_eq_B),

.A_gt_B(A_gt_B), .A_lt_B(A_lt_B));

// Your code here

endmodule

132 of 304 Version 1.0 of 26th May 2025, EPFL ©2025

https://en.wikipedia.org/wiki/Digital_comparator


Solution 22
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Solution 22] Absolute Difference Calculator using Comparator

a) The Verilog module for 4-bit comparator:

module comparator (
input [3:0] A,
input [3:0] B,
output reg A_eq_B,
output reg A_gt_B,
output reg A_lt_B

);

always @* begin
A_eq_B = 0;
A_gt_B = 0;
A_lt_B = 0;

if (A == B)
A_eq_B = 1;

else if (A > B)
A_gt_B = 1;

else
A_lt_B = 1;

end
endmodule
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b) The Verilog module for absolute_difference_calculator:

module absolute_difference_calculator (
input [3:0] A,
input [3:0] B,
output reg [3:0] result

);

wire A_eq_B, A_gt_B, A_lt_B;
comparator comp(.A(A), .B(B), .A_eq_B(A_eq_B),

.A_gt_B(A_gt_B), .A_lt_B(A_lt_B));

// Multiplexer logic
always @* begin

result = 4'b0000;
if (A_eq_B)

result = 4'b0000;
else if (A_gt_B)

result = A - B;
else

result = B - A;
end

endmodule

The waveform from GTKWave is shown below:

Figure 57: Waveform for absolute difference calculator.
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[Exercise 23] Testbench for a Gray Code Encoder

Please write a Verilog testbench to validate the functionality of the Gray code encoder
that you designed. As a part of this exercise, you will need to implement the following
steps:

• Create a testbench module that instantiates the Gray code encoder module, and
contains the required input and output wires.

• For select = 0, generate all possible input combinations of binary in and check the
output against the expected output (which should be the same as the input) for
each case.

• For select = 1, generate all possible input combinations of binary in and check the
output against the expected output (which should be the Gray code of the input)
for each case.

If the output matches the expected output for a particular input combination, output
the following message to the console:

[select val binary in val] Correct Output!

If the output does not match the expected output for a particular input combination,
output the following message to the console:

[select val binary in val] Error! Wrong Output!

Here, select val is the value of select signal and binary in val is the value of binary in.
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[Solution 23] Testbench for a Gray Code Encoder

module tb_gray_encoder;

reg [2:0] binary_in;
reg select;
wire [2:0] out;

gray_encoder DUT(
.binary_in(binary_in),
.select(select),
.out(out)

);

initial begin
select = 1'b0;
for(integer i = 0; i < 8; i = i + 1) begin

binary_in = i;
#10;
if (out != i) begin

$display("[0 %d] Error! Wrong Output!", i);
end else begin

$display("[0 %d] Correct Output!", i);
end

end

select = 1'b1;
binary_in = 3'b000;
#10;
if (out != 3'b000) begin

$display("[1 0] Error! Wrong Output!");
end else begin

$display("[1 0] Correct Output!");
end

binary_in = 3'b001;
#10;
if (out != 3'b001) begin

$display("[1 1] Error! Wrong Output!");
end else begin

$display("[1 1] Correct Output!");
end

binary_in = 3'b010;
#10;
if (out != 3'b011) begin

136 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 23
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

$display("[1 2] Error! Wrong Output!");
end else begin

$display("[1 2] Correct Output!");
end

binary_in = 3'b011;
#10;
if (out != 3'b010) begin

$display("[1 3] Error! Wrong Output!");
end else begin

$display("[1 3] Correct Output!");
end

binary_in = 3'b100;
#10;
if (out != 3'b110) begin

$display("[1 4] Error! Wrong Output!");
end else begin

$display("[1 4] Correct Output!");
end

binary_in = 3'b101;
#10;
if (out != 3'b111) begin

$display("[1 5] Error! Wrong Output!");
end else begin

$display("[1 5] Correct Output!");
end

binary_in = 3'b110;
#10;
if (out != 3'b101) begin

$display("[1 6] Error! Wrong Output!");
end else begin

$display("[1 6] Correct Output!");
end

binary_in = 3'b111;
#10;
if (out != 3'b100) begin

$display("[1 7] Error! Wrong Output!");
end else begin

$display("[1 7] Correct Output!");
end

end
endmodule
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[Exercise 24] Testbench for Absolute Difference Calculator using
Comparator

Please write a Verilog testbench to validate the functionality of the absolute difference
calculator that you designed. As a part of this exercise, you will need to implement the
following steps:

• Create a testbench module that instantiates the absolute difference calculator
module, and contains the required input and output wires.

• Generate all possible input combinations of A and B and check the output against
the expected output (which should be the absolute difference of the inputs) for
each case.

If the output matches the expected output for a particular input combination, output
the following message to the console:

[a val b val] Correct Output!

If the output does not match the expected output for a particular input combination,
output the following message to the console:

[a val b val] Error! Wrong Output!

Here, a val is the value of A and b val is the value of B.
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[Solution 24] Testbench for Absolute Difference Calculator using
Comparator

module tb_absolute_difference_calculator;

reg [3:0] A;
reg [3:0] B;
wire [3:0] result;
reg [3:0] exp_result;

absolute_difference_calculator DUT(
.A(A),
.B(B),
.result(result)

);

initial begin
for(integer i = 0; i < 16; i = i + 1) begin

for(integer j = 0; j < 16; j = j + 1) begin
A = i;
B = j;
#10;
exp_result = (A > B) ? A - B : B - A;
if (result !== exp_result) begin

$display("[%d %d] Error! Wrong Output!", i, j);
end else begin

$display("[%d %d] Correct Output!", i, j);
end

end
end

end

endmodule
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[Exercise 25] Creating a Sequential Circuit using D Flip-Flop

a) Consider the expression Y = A · B + C. Add an extra condition: If the value of Y
in the previous clock cycle was 1, then the output Y should be 0 in the current clock
cycle, irrespective of the current values of A, B, and C. Otherwise, if the value of Y in
the previous clock cycle was 0, then the output Y in the current clock cycle should be
equal to A ·B + C.

Design this circuit (on pen and paper) using a D flip-flop.
Assume that the CLK, R and S pins are driven from external sources.

Complete the following steps:

• Write the Boolean expression for the output Y (T ).

• Draw the circuit diagram for the sequential circuit.
Hint: Use one D flip-flop and combinational logic.

• Complete the timing diagram shown in Fig. 58 for this circuit.
Note: Assume that the reset signal (R) is active-high and synchronous.

Figure 58: Timing Diagram for the custom sequential circuit
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[Solution 25] Creating a Sequential Circuit using D Flip-Flop

If Y (T − 1) = 1, then Y (T ) = 0.
If Y (T − 1) = 0, then Y (T ) = A ·B + C.

We can formulate these two conditions with a characteristic table (equivalent to the
concept of a truth table in combinational circuits) as shown in Table 59a, considering
Y (T − 1) as an input. We can then derive a reduced Boolean expression for Y (T ) from
the characteristic table. Y (T ) = Y (T − 1) · (A · B + C). Once you have the Boolean
expression, you can draw the circuit diagram, as shown in Fig. 59b.

Y(T-1) A B C Y(T)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

(a) Characteristic table (b) Custom sequential circuit using D Flip-Flop

Figure 59: Example usage of D Flip-Flop in a sequential circuit

The timing diagram for the custom sequential circuit is shown in Fig. 60. You can use
the Boolean expression/circuit in Fig. 59b to find the value of Y at each clock cycle.

Figure 60: Timing Diagram for the custom sequential circuit
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[Exercise 26] Creating a D Flip-Flop in Verilog

As explained previously, D flip-flops are the basic building blocks of sequential circuits.
For this exercise, please write a verilog module for a D flip-flop.

The module should have the following interface and name:

module D_FF (
input clk,
input reset,
input set,
input D,
output reg Q,
output reg Q_n

);

The module should behave exactly as the D flip-flop described in the tutorial.
The functionality of the module should be as follows:

• The reset and set inputs are used to clear/set the output Q respectively.

• The reset and set inputs are synchronous.

• The reset signal should have higher priority over the set signal.

• The output Q should be equal to the input D at the rising edge of the clock signal,
if neither reset and set signals are set.

• The output Q n should be the complement of Q at all times.

Hint: Think of using always block with posedge conditions.

You are encouraged to write your own testbench to test your own design. You can also
use the testbench provided in the next page and follow the instructions to check if your
design is working correctly.
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Execute the following testbench to test your D flip-flop module:

module tb_D_FF;
reg clk, reset, set, D;
wire Q, Q_n;
D_FF D_FF_0 (.clk(clk), .reset(reset), .set(set),

.D(D), .Q(Q), .Q_n(Q_n));
initial begin

$dumpfile("tb_D_FF.vcd");
$dumpvars(0, tb_D_FF);
clk = 0; reset = 1; set = 0; D = 1;
#7;
D = 0;
#2;
reset = 0;
#3;
D = 1;
#5;
D = 0;
#10;
set = 1;
#13;
$finish;

end
always begin

#5 clk = ~clk;
end

endmodule

Visualize the waveforms on GTKWave, the waveforms should match Fig. 61.

Figure 61: Waveforms for the D Flip-Flop
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[Solution 26] Creating a D Flip-Flop in Verilog

Below is the Verilog for DFF:

module D_FF (
input clk,
input reset,
input set,
input D,
output reg Q,
output reg Q_n

);

always@(posedge clk) begin
if(reset) begin

Q <= 1'b0;
Q_n <= 1'b1;

end
else if(set) begin

Q <= 1'b1;
Q_n <= 1'b0;

end
else begin

Q <= D;
Q_n <= ~D;

end
end

endmodule
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[Exercise 27] Timing diagrams of different types of D flip-flops

Consider the timing diagram in Fig. 63. Assuming that the D and CLK inputs shown
are applied to the circuit in Fig. 62, draw waveforms for the Qa and Qb signals.

(Hint: The top flip-flop is triggered on the rising edge of the clock signal, while the
bottom flip-flop is triggered on the falling edge of the clock signal.)

Figure 62: Sequential Circuit with two D flip-flops

Figure 63: Timing Diagram for waveforms
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[Solution 27] Timing diagrams of different types of D flip-flops

The first D Flip-Flop updates its output on the rising edge of the clock signal. The
second D Flip-Flop updates its output on the falling edge of the clock signal. The
waveforms of the outputs of the D Flip-Flops are shown in Figure 64.

Figure 64: Timing Diagram of the outputs of the D Flip-Flops
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[Exercise 28] Analysing the behavior of sequential circuits

Consider the sequential circuit shown in Fig. 65. The circuit consists of two 4-bit coun-
ters and a few logic gates. The functionality of each 4-bit counter is as follows:

1. The Enable input is used to enable the counter, i.e., if the Enable input is 0, the
counter is disabled and should not increment its value.

2. The Load input is used to load the counter, i.e., if the Load input is 1, the counter
should load the value present at {D0, D1, D2, D3}.

3. In the absence of the Load signal, the counter increments by 1 at each clock cycle.

Figure 65: Sequential Circuit consisting of two counters
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Answer the following questions with respect to the circuit shown in Fig. 65

(Note: For Parts 1, 2, and 3, you can assume that the clear signal (CLR) is active only
in the first clock cycle and then inactive forever. The CLK signal behaves as a regular
clock signal.)

1. Given that both counters start from Q0, Q1, Q2, Q3 = 0000, what is the sequence of
values arising at X(X0, X1, X2, X3) and Y (Y0, Y1, Y2, Y3)?

2. Calculate the number of possible states for:

(a) One of the 4-bit counters in isolation

(b) The complete circuit (including the two 4-bit counters and the logic gates)

3. Based on your answer to Part 1, what is the functionality of this sequential circuit?

4. Implement the sequential circuit shown in Fig. 65 using Verilog.
The module should have the following interface and name:

module counter_circuit(
input clk,
input clr,
output reg [3:0] X,
output reg [3:0] Y

);

Test your implementation using the testbench (tb counter circuit.v) provided on
Moodle. Try to understand how the testbench works and check if the output of
the testbench matches the sequence you found in Part 1.
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[Solution 28] Analysing the behavior of sequential circuits

First, derive the boolean expressions the Load and Enable signals of the two counters.
For Counter X,

1. Load signal: LX = (X0 ·X3) + CLR

2. Enable signal: EX = 1

For Counter Y,
1. Load signal: LY = (Y0 · Y3 · (X0 ·X3)) + CLR

2. Enable signal: EY = (X0 ·X3)

In the beginning, X = 0000 and Y = 0000, so LX = 0, LY = 0 and EY = 0. (Note that
the CLR signal is used only in the first clock cycle to load the counters to 0000, and then
it is always 0, so it doesn’t affect the boolean expressions.) Counter X increments by 1
(X = 0001), and Counter Y remains the same (Y = 0000). The LX , LY and EY signals
do not change and Counter X keeps incrementing by 1 until it reaches X = 1001. Y
remains fixed (= 0000) for this entire duration.

When X = 1001, LX = 1 and EY = 1. Hence, in the next clock cycle, Counter X will
load 0000 (X = 0000) and Counter Y will increment by 1 (Y = 0001). As a result, again
LX = 0, LY = 0 and EY = 0. X will keep incrementing by 1 until it reaches X = 1001,
and Y will remain fixed at Y = 0001. This process will keep repeating.

At the very end when, when X = 1001 and Y = 1001, LX = 1, LY = 1 and EY = 1.
So, both X and Y will load 0000 in the next clock cycle. And the entire process starting
from X = 0000 and Y = 0000 will repeat.

1. The sequence (Y, X) observed is as follows:
0000 0000 (= 0 0)
0000 0001 (= 0 1)
0000 0010 (= 0 2)
...
0000 1001 (= 0 9)
0001 0000 (= 1 0)
0001 0001 (= 1 1)
0001 0010 (= 1 2)
...
1001 1001 (= 9 9)
0000 0000 (= 0 0)
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2. (a) Each 4-bit counter in isolation can take any value between 0000 and 1111, so
16 states are possible.

(b) However, when combined with logic gates as shown in Fig. 65, each counter
can only take values between 0000 and 1001, so 10 states are possible for
each counter, and in total 10 ∗ 10 = 100 states are possible. Note that these
100 states correspond to the same sequence found in Part 1.

3. The sequence found in Part 1 is the sequence of BCD numbers from 00 to 99, with
the value of each digit represented by the output of each counter. Hence, this
circuit functions as a BCD counter.

4. The verilog code for the sequential circuit as shown in Fig. 65 is as follows:

module counter_circuit(
input clk,
input clr,
output reg [3:0] X,
output reg [3:0] Y

);
// Boolean logic for the load and enable signals
wire load_X, load_Y, enable_X, enable_Y;
assign enable_X = 1'b1;
assign enable_Y = X[0] & X[3];
assign load_X = clr | (X[0] & X[3]);
assign load_Y = clr | ((X[0] & X[3]) & Y[0] & Y[3]);

always@(posedge clk) begin // Counter for X
if(load_X == 1'b1) begin

X <= 4'b0000;
end else begin

if(enable_X == 1'b1) begin
X <= X + 1;

end
end

end
always@(posedge clk) begin // Counter for Y

if(load_Y == 1'b1) begin
Y <= 4'b0000;

end else begin
if(enable_Y == 1'b1) begin

Y <= Y + 1;
end

end
end

endmodule

You should expect the following output after running the testbench:
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Y = 0, X = 0
Y = 0, X = 1
Y = 0, X = 2
...
Y = 9, X = 8
Y = 9, X = 9
Y = 0, X = 0
Y = 0, X = 1
Y = 0, X = 2
Y = 0, X = 3

The testbench generates the same sequence of BCD numbers as found in Part 1.
You can also visualise the input and output waveforms using GTKWave. The
waveforms should look like the ones shown in Fig. 66.

Figure 66: Waveforms of the sequential circuit
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[Exercise 29] Linear-Feedback Shift Register

Linear-feedback shift registers (LFSRs) are N -bit counters exhibiting pseudo-random be-
havior. LFSRs are realized as shift registers, with input bits as linear functions of the
output bits. At the output, LFSRs generate a periodic sequence of pseudo-random
numbers. The period of the sequence (i.e., the number of clock cycles before the se-
quence repeats) does not exceed 2N−1 clock cycles, where N is the number of flip-flops
in the LFSR. LFSRs are commonly used in cryptography, computer graphics, auto-
matic testing, and error detection and correction. To learn more about LFSRs, visit the
Wiki: Link.

Figure 67 shows an example three-bit LFSR. The inputs are the clock and the asyn-
chronous active-high power-on reset (not shown). There are three flip-flops; their out-
puts are Q2, Q1, and Q0. The output of the LFSR is a three-bit binary vector Q2Q1Q0.
The flip-flop input bits are linear functions of the output bits. To generate a sequence
of pseudo-random numbers, the LFSR must be initialized with a value different than
all zeros. This initial value is commonly referred to as the seed of the LFSR.

Figure 67: Three-bit linear-feedback shift register

a) Assuming the seed (001)2, what is the sequence of pseudo-random numbers gener-
ated by the LFSR in the subsequent seven clock cycles?

b) Describe what is missing in the LFSR circuit in Figure 67 to allow loading the LFSR
seed in a single clock cycle (i.e., parallel loading of the seed).

c) Write the Verilog model of the complete three-bit LFSR module (lfsr).

d) Write a testbench to verify the functionality of the LFSR.
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[Solution 29] Linear-Feedback Shift Register

a) At each clock cycle, Q2 is assigned Q1, Q1 is assigned Q2 XOR Q0, and Q0 is assigned
Q2. The sequence of the LFSR for the first seven clock cycles is as follows:

• Clock cycle 0: Q2Q1Q0 = 001

• Clock cycle 1: Q2Q1Q0 = 010

• Clock cycle 2: Q2Q1Q0 = 100

• Clock cycle 3: Q2Q1Q0 = 011

• Clock cycle 4: Q2Q1Q0 = 110

• Clock cycle 5: Q2Q1Q0 = 111

• Clock cycle 6: Q2Q1Q0 = 101

• Clock cycle 7: Q2Q1Q0 = 001 (repeats)

b) To allow loading the seed value into the LFSR, we need to add a multiplexer at
the input of the flip-flops and a 1-bit load signal. The multiplexer selects between the
seed value and the feedback value based on the load signal. Therefore, seed value and
feedback act as inputs of the multiplexer and load acts as the select signal. Figure 68
shows the circuit diagram with multiplexers to load the seed.

Figure 68: Three-bit linear-feedback shift register with seed loading
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c) Below is the Verilog description of the module:

Note: If you copy the Verilog code below, please retype the caret character (ˆ) as special
characters are sometimes misinterpreted or corrupted during copying.

module lfsr(
input clk, reset, load,
input [2:0] seed,
output reg [2:0] out

);

always @(posedge clk or posedge reset) begin
if (reset == 1) begin

out <= 0;
end else if (load == 1) begin

out <= seed;
end else begin

out <= {
out[1], // D2 = Q1
out[2] ˆ out[0], // D1 = Q2 XOR Q0
out[2]}; // D0 = Q2

end
end

endmodule
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d) Below is a testbench to verify the functionality of the LFSR on the sequence after
initialization with the seed value 001:

module testbench;
reg clk, reset, load;
reg [2:0] seed;
wire [2:0] out;

lfsr dut (.clk(clk), .reset(reset), .load(load), .seed(seed), .out(out));

initial begin
$dumpfile("tb_lfsr.vcd");
$dumpvars(0, testbench);

clk = 0;
reset = 0;
load = 1;
seed = 3'b001;
#20 load = 0;

if (out != 3'b001)
$error("Cycle 0 failed; expected 3'b001, got %b", out);

#10 if (out != 3'b010)
$error("Cycle 1 failed; expected 3'b010, got %b", out);

#10 if (out != 3'b100)
$error("Cycle 2 failed; expected 3'b100, got %b", out);

#10 if (out != 3'b011)
$error("Cycle 3 failed; expected 3'b011, got %b", out);

#10 if (out != 3'b110)
$error("Cycle 4 failed; expected 3'b110, got %b", out);

#10 if (out != 3'b111)
$error("Cycle 5 failed; expected 3'b111, got %b", out);

#10 if (out != 3'b101)
$error("Cycle 6 failed; expected 3'b101, got %b", out);

#10 if (out != 3'b001)
$error("No wrap-around; expected 3'b001, got %b", out);

$finish;
end

always begin
#5 clk = ~clk;

end
endmodule
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[Exercise 30] Up/Down counter

a) Design a 4-bit synchronous counter in Verilog that can count both up or down start-
ing from any value provided by the user. The functionality of this module should be
as follows:

• There should be a synchronous active-high reset input to clear the counter.

• There should be a load and a 4-bit load val input such that the user should be
able to load a 4-bit value into the counter by making the load input high.

• There should be an up input to select the direction of the counter. If up is high,
the counter should increment; otherwise, it should decrement.

• The counter should handle overflows, i.e., if the counter is at its maximum value
and is incremented, it should go back to zero, and if it is at zero and is decremen-
ted, it should go to its maximum value.

You are advised to use the ternary operator to select between the up and down counter
functionality. The ternary operator is a conditional operator that provides a shorter
syntax for the if-else statement. The syntax is as follows:

<condition> ? <expression1> : <expression2>

If the condition is true, the operator returns the value of expression1; otherwise, it
returns the value of expression2.

b) Create a comprehensive testbench to verify the functionality of the counter.
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[Solution 30] Up/Down counter

a) Below is a Verilog description of the module:

module up_down_counter(
input clk,
input reset,
input load,
input [3:0] load_val,
input up,
output reg [3:0] count

);

always @(posedge clk) begin
if (reset == 1) begin

count <= 4'b0000;
end else begin

if (load == 1) begin
count <= load_val;

end else begin
count <= count + ((up == 1) ? 1 : -1);

end
end

end

endmodule

In the module above, we used the ternary operator to select between incrementing and
decrementing the counter based on the value of the select signal. It is equivalent to the
following if...else statement:

if (up == 1)
count = count + 1;

else
count = count - 1;
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b) Below is a comprehensive testbench to verify the functionality of the counter:

module testbench;

reg clk, reset, load, up;
reg [3:0] load_val;
wire [3:0] count;

up_down_counter dut (
.clk(clk),
.reset(reset),
.load(load),
.load_val(load_val),
.up(up),
.count(count)

);

initial begin
$dumpfile("tb_up_down_counter.vcd");
$dumpvars(0, testbench);

clk = 0;
reset = 0;
up = 0;
load = 0;
load_val = 0;

#10 reset = 1;
#10 reset = 0;
if (count == 4'b0000) begin

$display("Reset test passed");
end else begin

$error("Reset test failed");
end

up = 1;
#100

if (count == 4'b1010) begin
$display("Increment test passed");

end else begin
$error("Increment test failed");

end

up = 0;
#100
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if (count == 4'b0000) begin
$display("Decrement test passed");

end else begin
$error("Decrement test failed");

end

#10 load = 1;
load_val = 4'b1111;
#10 load = 0;
if (count == 4'b1111) begin

$display("Parallel load test passed");
end else begin

$error("Parallel load test failed");
end
$finish;

end

always begin
#5 clk = ~clk;

end
endmodule
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[Exercise 31] Generating a Periodic Output

Consider an N-bit counter that increments on the rising edge of the clock signal and
goes back to zero after reaching the maximum value or with a synchronous active-high
reset signal. If we check the waveform of each bit of the counter, we see that they all are
periodic signals with different frequencies. Bit zero toggles at every clock cycle, so it
generates a periodic square wave with a frequency of fCLK/2. Similarly, bit one toggles
at every two clock cycles, so it generates a periodic square wave with a frequency of
fCLK/4 and so on. The Figure below shows the waveform for bit zero and bit one.

To create such a waveform with fCLK/4, a 2-bit counter can be used as it would create
the following sequence: (00)2, (01)2, (10)2, (11)2, (00)2 . . . and this sequence’s most sig-
nificant bit would be zero for two cycles and one for two cycles. In other words, a 2-bit
counter’s most significant bit would have the period of four cycles, and as a result a
frequency of fCLK/4.

Design a counter whose most significant bit can be used to generate a periodic signal
with a frequency of fCLK/4096.

a) What is the number of flip-flops required to design this counter?

b) Implement this counter in Verilog.

c) Create a comprehensive testbench to verify the functionality of the counter.
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[Solution 31] Generating a Periodic Output

a) The counter should count up to 4096 to generate a periodic signal with a frequency
of fCLK/4096. The MSB will be low for the first 2048 clock cycles, high for the next 2048
clock cycles, low for the next 2048 clock cycles, and so on.

To count up to 4096, we will need 12 bits (⌈log2(4096)⌉ = 12 bits), which results in a
12-bit counter, and to store each bit, we will need 12 flip-flops.

b) Below is the Verilog description of the module:

module periodic_output(
input clk,
input rst,
output reg out

);

reg [11:0] count;

always @(posedge clk)
begin

if (rst == 1) begin
count <= 12'b0000_0000_0000;

end else begin
count <= count + 1;

end
end

always @(*) begin
out = count[11];

end

endmodule
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c) Below is the testbench for the module:

module tb_periodic_output;

reg clk, rst;
wire out;

integer expected;

periodic_output dut (
.clk(clk),
.rst(rst),
.out(out)

);

initial begin
$dumpfile("dump.vcd");
$dumpvars(0, tb_periodic_output);

clk = 0;
rst = 1;
#10;
rst = 0;
for (integer i = 1; i < 5000; i = i + 1) begin

#10;
expected = (i%4096)/2048;
if (out != expected) begin

$display("Error: out = %d, expected = %d, at time = %d",
out, expected, i);

$finish;
end

end
$display("Pass");
$finish;

end

always begin
#5 clk = ~clk;

end

endmodule

162 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Exercise 32
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Exercise 32] Modulo Six Counter

In general, a k-bit counter can count from zero to 2k − 1, overflow back to zero, and
repeat the cycle. For example, a 2-bit counter counts in the sequence zero, one, two,
three, zero, one, two, three, and so on.

This 2-bit counter is called a modulo four counter because it counts from zero to three.
The value of the counter at clock cycle n is n mod 4. So, a k-bit counter can be referred
to as a modulo 2k counter.

However, how can a modulo N counter be designed such that N is not a power of two?
Consider a modulo six counter that counts in the sequence zero, one, two, three, four,
five, zero, one, two, three, four, five, and so on.

In this exercise, we explore the design of a modulo six counter.

a) What is the minimum number of flip-flops required to design the counter?

b) Implement a synchronous modulo six counter in Verilog. The module should use
the minimum number of bits (that was found in part a) to store the counter value. The
Verilog module should have the following functionality:

• There should be a synchronous active-high reset input to clear the counter.

• There should be an enable input to enable the counter, i.e., if the enable input
is zero, the counter is disabled and should not change its value, otherwise, the
counter increments.

• The counter should overflow back to zero after reaching five.

c) Create a comprehensive testbench to verify the functionality of the modulo six
counter.
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[Solution 32] Modulo Six Counter

a) The counter can take six possible values (zero, one, two, three, four, five). Hence, we
need ⌈log2(6)⌉ = 3 bits to represent the values. As each flip-flop can only store one bit,
the minimum number of flip-flops required are three.

b) Below is the Verilog description of the module

module modulo_6_counter(
input clk,
input reset,
input enable,
output reg [2:0] count

);

always @(posedge clk) begin
if (reset == 1) begin

count <= 3'b000;
end else begin

if (enable == 1) begin
if (count == 3'b101) begin

count <= 3'b000;
end else begin

count <= count + 1;
end

end else begin
count <= count;

end
end

end

endmodule
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c) Below is the testbench for the module:

module testbench;

reg clk, reset, enable;
wire [2:0] count;

modulo_6_counter dut (
.clk(clk),
.reset(reset),
.enable(enable),
.count(count)

);

initial begin
$dumpfile("tb_modulo_6_counter.vcd");
$dumpvars(0, testbench);

clk = 0;
reset = 1;
enable = 0;
#10;
reset = 0;
enable = 1;
for(integer i = 1; i < 10; i = i + 1) begin

#10;
if (count == i%6) begin

$display("Pass: count = %d, expected = %d", count, i%6);
end else begin

$display("Error: count = %d, expected = %d", count, i%6);
end

end
enable = 0;
#10;
if (count == 3) begin

$display("Pass: count = %d, expected = %d", count, 3);
end else begin

$display("Error: count = %d, expected = %d", count, 3);
end
$finish;

end

always begin
#5 clk = ~clk;

end

endmodule
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[Exercise 33] Mystery Circuit

Consider the following synchronous circuit with one input b and one output x. The
reset is not shown in the diagram.

Figure 69: Mystery Circuit

a) Given the waveform template below, fill in the values of the signals assuming zero
delay for both the gates and flip-flops.

Figure 70: Waveform Template

b) Briefly describe with words the functionality of this circuit. Also, explain the pur-
pose of using three flip-flops.
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[Solution 33] Mystery Circuit

a) The waveform is as follows:

Figure 71: Waveform Solution

b) The circuit is a rising edge detector, which generates a short pulse when the input
signal b transitions from low to high. The way it works is as follows:

1. When the input b transitions from zero to one, the first D flip-flop captures the
value of b at the rising edge of the clock signal. This stores the current state of b
in Q0.

2. On the next rising clock edge, the second D flip-flop captures the value of Q0,
storing it in Q1. This means Q1 now holds the previous state of b.

3. On the clock edge after that, the third D flip-flop captures the value of Q1, storing
it in Q2. This means Q2 now holds the state of b two clock cycles ago.

4. The final combinatorial logic, a two-input AND gate, compares Q1 and the nega-
tion of Q2. This will result in a high output x only when Q1 is high and Q2 is low
indicating that the signal was low two cycles ago and it was high one cycle ago,
which indicates a rising edge.

5. This high output x will last for one clock cycle, two clock cycles after the rising
edge on b occurred.

The reason why there are three flip-flops is to avoid any metastability issues. The
metastability is more likely to occur at the first flip-flop, and then the possibility de-
creases with each flip-flop. As the output of the first flip-flop (Q0) is more likely to have
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metastability issues, we do not use it for the output, but instead, we use the output of
the second flip-flop (Q1) and the output of the third flip-flop (Q2) to detect the rising
edge.

168 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Exercise 34
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Exercise 34] Analysing Finite State Machines (FSMs)

Consider the sequential circuit shown in Fig. 72. Answer the following questions:

1. Calculate the Boolean expressions for Y1, Y2 and Z.

2. Derive the state/output table for the sequential circuit. (Hint: Use the Boolean
expressions derived in Part 1. y1 and y2 represent the current state, Y1 and Y2

represent the next state, W represents the input, and Z represents the output.)

3. Based on the state/output table you derived, what is the functionality of this
sequential circuit?

Note: You can assume that the CLK signal behaves as a regular clock signal, and the R
signal behaves simply as an asynchronous reset (power-on reset) of the FFs.

Figure 72: Sequential Circuit
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[Solution 34] Analysing Finite State Machines (FSMs)

1. The boolean expressions are as follows:
Y1 = y1 ·W + y2 ·W
Y2 = y2 ·W + y1 ·W
Z = y1 · y2

2. The state/output table is as follows:

Present
State

Next
State Output

(Z)W = 0 W = 1
y2y1 Y2Y1 Y2Y1

00 00 01 0
01 00 10 0
10 00 11 0
11 00 11 1

Table 20: State/output table

3. As seen from the state/output table (Table 20), no matter which state the FSM
is currently in, if the input W is 0 then the next state is 00. Starting from state
00, if the input (W ) is 1, it transitions to 01. From state 01, if the input is 1, it
transitions to 10. Again from state 10, if the input is 1, it transitions to 11. The
output (Z) of the FSM is 1 only in the state 11, which can only be reached if W
is 1 for three consecutive clock cycles as explained. Hence, the sequential circuit
that implements this FSM is a sequence detector that detects the sequence 111.

170 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Exercise 35
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

[Exercise 35] Sequence Detector

a) Design a Moore FSM that has a 1-bit input W and a 1-bit output Z.
The FSM functions as a sequence detector that produces Z = 1 when the previous two
values of W were 00 or 11; otherwise Z = 0.

Complete the following tasks:

1. How many states does the FSM have?

2. Draw the state diagram of the FSM.

3. Write the state/output table of the FSM.

4. Encode the states with the minimum number of bits possible. The i-th state
should be represented by the binary encoding of i.

5. Derive the Boolean expressions for the next state and output functions.

b) An alternate encoding scheme popular for encoding states is the one-hot encoding
scheme. The traditional approach (as done in Part 4) needs ⌈log2N⌉ bits to represent
N states. One hot encoding uses N bits to represent N states. Each bit represents one
state. Only one of the bits is set to 1, and the rest are set to 0. The index of the set bit
represents the state. For example, consider an FSM that has 4 states (State 0, 1, 2 and
3). To represent State 3, the binary representation would be 11. However, the one-hot
representation would be 1000. The bit with index 3 (indexing starting from zero) is set
to 1 corresponding to State 3 and all other bits are 0. Similarly, to represent the state 0,
the binary representation would be 00. But, the one-hot representation would be 0001.

Complete the following tasks:

1. Encode the states using a one hot encoding.

2. Derive the Boolean expressions for the next state and output functions.

3. How does the choice of encoding affect the complexity of the next state and out-
put functions? Answer in terms of

(a) How does the number of D Flip-Flops required to implement the circuit
change?

(b) How many NOT gates and 2-input AND/OR gates in the circuit are re-
quired?
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[Solution 35] Sequence Detector

a)

1. One state (State A) represents the initial state when no inputs have been applied
yet. Two states (State B and State D) are required to store the information what
was the value of input W in the previous clock cycle. Two more states (State C
and State E) are required to store the information if the previous two values of W
were 00 or 11. So, in total, 5 states are required. The reasoning behind choosing
these 5 states is explained next.

2. (a) To draw the state diagram, lets first see how the FSM operates. The FSM
is initially in state A. If W = 0, it transitions to state B, and if W = 1, it
transitions to state D.

(b) Now, if the FSM is in state B, and W = 0, then it means W = 0 for two clock
cycles, and the FSM transitions to state C. However, if the FSM is in state B,
and W = 1, then it means W = 01 in two clock cycles. This sequence is not
useful, and the FSM transitions to state D to represent the fact that W was
equal to 1.

(c) Similarly, if the FSM is in state D, and W = 1, then it means W = 1 for two
clock cycles, and the FSM transitions to state E. If W = 0, then the sequence
10 is not useful and the FSM transitions to state B.

(d) If the FSM is in state C, and W = 0, then it still means W = 00 in the last
two clock cycles, and the FSM remains in state C. However if W = 1, then
the sequence 01 is not useful and the FSM transitions to state D. Similarly,
if the FSM is in state E, and W = 1, then it remains in state E, otherwise it
transitions to state B.

(e) The output of the FSM is 1 simply when the FSM is in state C or state E.

This behavior is represented through the state diagram shown in Fig. 73.

3. The state/output table, shown in Table 21, can be calculated from the state dia-
gram shown in Fig. 73.

4. State A is encoded as 000. State B is encoded as 001. State C is encoded as 010.
State D is encoded as 011. State E is encoded as 100. The state/output table is
shown in Table 22.

5. The next state and output Boolean expressions can then be derived in SOP form:

• Y1 = W ·y3·y2·y1+W ·y3·y2·y1+W ·y3·y2·y1+W ·y3·y2·y1+W ·y3·y2·y1+W ·y3·y2·y1
= y3 · y2 · y1 +W · y3 · y2 · y1 +W · y3 · y2 · y1 +W · y3 · y2 · y1 +W · y3 · y2 · y1
= y3 · y2 · y1 +W · (y3 · y2 · y1 + y3 · y2 · y1) +W · (y3 · y2 · y1 + y3 · y2 · y1)
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Figure 73: State Diagram for the FSM

Present
State

Next
State Output

(Z)
W = 0 W = 1

A B D 0
B C D 0
C C D 1
D B E 0
E B E 1

Table 21: State/output table

• Y2 = W ·y3 ·y2 ·y1+W ·y3 ·y2 ·y1+W ·y3 ·y2 ·y1+W ·y3 ·y2 ·y1+W ·y3 ·y2 ·y1
= W · y3 · y2 · y1 + y3 · y2 · y1 + y3 · y2 · y1

• Y3 = W · y3 · y2 · y1 +W · y3 · y2 · y1
= W · (y3 · y2 · y1 + y3 · y2 · y1)

• Z = y3 · y2 · y1 + y3 · y2 · y1

b)

1. In one-hot encoding, State A is encoded as 00001. State B is encoded as 00010.
State C is encoded as 00100. State D is encoded as 01000. State E is encoded as
10000. The corresponding state/output table is now shown in Table. 23:

2. The next state and output Boolean expressions can then be derived from the
state/output table using SOP form:

• Y1 = 0
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Present
State

Next
State Output

(Z)W = 0 W = 1
y3y2y1 Y3Y2Y1 Y3Y2Y1

000 001 011 0
001 010 011 0
010 010 011 1
011 001 100 0
100 001 100 1

Table 22: State/output table using binary encoding

Present
State

Next
State Output

(Z)W = 0 W = 1
y5y4y3y2y1 Y5Y4Y3Y2Y1 Y5Y4Y3Y2Y1

00001 00010 01000 0
00010 00100 01000 0
00100 00100 01000 1
01000 00010 10000 0
10000 00010 10000 1

Table 23: State/output table using one-hot encoding

• Y2 = W · (y1 + y4 + y5)

• Y3 = W · (y2 + y3)

• Y4 = W · (y1 + y2 + y3)

• Y5 = W · (y4 + y5)

• Z = y3 + y5

Note that the fact that only one bit of the binary vector representing the state can
be one greatly simplifies the circuit design. As an example, y5 · y4 · y3 · y2 · y1 is
equivalent to simply y1 because y1 = 1 automatically implies y5, y4, y3, y2 = 0000.

3. Comparison of one-hot encoding with binary encoding:

(a) One-hot encoding needs N bits for N states whereas, binary encoding only
needs ⌈log2N⌉ bits. Each bit corresponds to a D Flip-Flop, so circuits using
one-hot encoding use more D Flip Flops.

(b) To count the gates, we count all the + and · in the logic functions that ac-
count for OR and AND gate, respectively (note that we are not sharing the
gates for simplification). In addition, we need a NOT gate to invert the input
(W ). Note that we do not need a NOT gate to invert state values (y1, y2, y3)
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because we can get them from the Q pin of the flip-flop. As a result, the com-
binational logic for next state transitions and output value needs 37 gates
when using binary encoding, and only 12 gates when using one-hot encod-
ing. Hence, the circuit for one-hot encoding is simpler.
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[Exercise 36] Implementing FSMs in Verilog

Consider an FSM that has a 1-bit input W and a 1-bit output Z. The current state of
the FSM is denoted by y2y1, and the next state is denoted by Y2Y1. The FSM has four
possible states, which are encoded as: 00, 01, 10, and 11. The state/output table of the
FSM is given in Table 1.

Present
State

Next
State Output

(Z)W = 0 W = 1
y2y1 Y2Y1 Y2Y1

00 10 11 0
01 01 00 0
10 11 00 0
11 10 01 1

Table 24: State/output table of the FSM

1. Derive the Boolean expressions for the next state and output functions.

2. Is this FSM a Moore or Mealy machine? Justify your answer.

3. Draw the circuit diagram of a sequential circuit that implements this FSM.
(Note: The circuit should include a standard clk signal and a synchronous reset
signal that resets the state to 00 if set high.)

4. Design a Verilog module that implements this FSM. The module should have the
following interface and name:

module fsm(
input clk,
input reset,
input W,
output reg Z

);

5. Write a testbench to verify the functionality of the Verilog module. The reset
signal should first reset the FSM state. Next, the testbench can apply different
input squences and check if the output matches the expected output in Table 1.
Ensure that the testbench covers all possible state transitions.
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[Solution 36] Implementing FSMs in Verilog

1. The next state and output Boolean expressions can then be derived in SOP form:

• Y1 = W · y2 · y1 +W · y2 · y1 +W · y2 · y1 +W · y2 · y1
• Y2 = y2 · y1 +W · y2
• Z = y2 · y1

2. The FSM is a Moore machine because the output Z only depends on the current
state y2y1, as Z = y2 · y1 and does not depend on the input (W ) at all.

3. The circuit diagram is shown in Fig. 74

Figure 74: Sequential circuit implenenting FSM
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4. The Verilog module can be implemented in three ways.

Solution 1: Using the derived Boolean expressions. We do not advise this solu-
tion for the course, where three always blocks are not used. We advise you to
implement it using three always blocks, two purely combinational and one se-
quential. The implementation with three always blocks is easy to read, manage,
and implement.

module fsm(
input clk,
input reset,
input W,
output reg Z

);
reg [1:0] S;

always@(posedge clk) begin
if(reset == 1'b1) begin

S <= 2'b00;
end else begin

S[0] <= (W & ((!S[0] & !S[1]) |
(S[0] & S[1]))) |
(!W & ((!S[0] & S[1]) |
(S[0] & !S[1])));

S[1] <= (!S[0] & !S[1]) |
(!W & S[1]);

end
end

always@(*) begin
Z = S[0] & S[1];

end
endmodule
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Solution 2: Using the derived Boolean expressions with the recommended
guidelines, that is, to use three always blocks as it is easy to read, manage, and
implement.

module fsm(
input clk,
input reset,
input W,
output reg Z

);
reg [1:0] D, S;

// Next-state logic
always@(*) begin

D[0] = (W & ((!S[0] & !S[1]) |
(S[0] & S[1]))) |
(!W & ((!S[0] & S[1]) |
(S[0] & !S[1])));

D[1] = (!S[0] & !S[1]) |
(!W & S[1]);

end

// State memory
always@(posedge clk) begin

if(reset == 1'b1) begin
S <= 2'b00;

end else begin
S <= D;

end
end

// Output logic
always@(*) begin

Z = S[0] & S[1];
end

endmodule
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Solution 3: Using the state/output table specification with the recommended
guidelines, that is, to use three always blocks as it is easy to read, manage, and
implement.

module fsm(
input clk,
input reset,
input W,
output reg Z

);
reg [1:0] S_next, S;

//Next-state logic
always@(*) begin

S_next = 2'b00;
case(S)

2'b00: if (W == 1'b0) S_next = 2'b10;
else S_next = 2'b11;

2'b01: if (W == 1'b0) S_next = 2'b01;
else S_next = 2'b00;

2'b10: if (W == 1'b0) S_next = 2'b11;
else S_next = 2'b00;

2'b11: if (W == 1'b0) S_next = 2'b10;
else S_next = 2'b01;

default: S_next = 2'b00;
endcase

end

// State memory
always@(posedge clk) begin

if(reset == 1'b1) begin
S <= 2'b00;

end else begin
S <= S_next;

end
end

// Output logic
always@(*) begin

Z = S[0] & S[1];
end

endmodule
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5. The testbench can be written as follows:

module tb_fsm;
reg clk, reset, W;
wire Z;

fsm DUT(.clk(clk), .reset(reset),
.W(W), .Z(Z));

initial begin
$dumpfile("tb_fsm.vcd");
$dumpvars(0, tb_fsm);
reset = 1;
clk = 0;
W = 0;
#10 reset = 0; // State -> 00
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10; // 00 -> 10
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10; // 10 -> 11
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10 W = 1; // 11 -> 10
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10; // 10 -> 00
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10; // 00 -> 11
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10 W = 0; // 11 -> 01
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10 W = 1; // 01 -> 01
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10; // 01 -> 00
$display("Internal State = %b, Output = %b", DUT.S, Z);
#10 $finish;

end

always begin
#5 clk = ~clk;

end

endmodule

This testbench cycles through all 8 possible state transitions, and prints the in-
ternal state and output at each step. (Note: If the name of the state variable
inside your FSM module is different, you should replace DUT.S with DUT.XYZ
where XYZ is the name of your state variable.)

On successful execution, the output should be:
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VCD info: dumpfile tb_fsm.vcd opened for output.
Internal State = 00, Output = 0
Internal State = 10, Output = 0
Internal State = 11, Output = 1
Internal State = 10, Output = 0
Internal State = 00, Output = 0
Internal State = 11, Output = 1
Internal State = 01, Output = 0
Internal State = 01, Output = 0
Internal State = 00, Output = 0
tb_fsm.v:27: $finish called at 100 (1s)
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[Exercise 37] FSM for a Candy Vending Machine

Consider a vending machine that dispenses candy bars. Each candy bar costs 8 CHF
(it is a very fancy candy). The candy bar accepts coins of 1 CHF, 2 CHF, and 5 CHF.
A user can insert as many coins into the vending machine as they want. The vending
machine will dispense a candy bar when the user has inserted a total of atleast 8 CHF.
Any extra money will count towards the next candy bar.

For example, a user can enter a 5 CHF, 2 CHF and a 1 CHF coin to get a candy bar. A
user can also enter a 5 CHF and 5 CHF coin. In that case, the user will get one candy
bar. The vending machine will still have 2 CHF left inside, and the user can just insert
a new 5 CHF coin and a 1 CHF coin to get another candy bar.

Design a finite state machine that models the behavior of this vending machine.

Complete the following tasks:

1. What should be the input(s), output(s), and internal state(s) of the FSM?

2. Encode the input(s), output(s) and internal state(s) of the FSM with a suitable
representation of your choice.

3. Draw the state diagram of the finite state machine.

4. Write the state/output table of the finite state machine.
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[Solution 37] FSM for a Candy Vending Machine

1. The input to the finite state machine is the value of the coin inserted by the user.
The internal state of the finite state machine is the total amount of money already
present inside the vending machine. The output of the finite state machine is 1 if
the vending machine should dispense a candy bar, and 0 otherwise.

2. There can be 4 possible inputs: no coin or 1 CHF or 2 CHF or 5 CHF. These 4
inputs can be encoded as 00, 01, 10, and 11 respectively. The vending machine
can have 0 CHF or 1 CHF or 2 CHF or 3 CHF or 4 CHF or 5 CHF or 6 CHF or
7 CHF. These 8 states can be encoded as 000, 001, 010, 011, 100, 101, 110, and
111 respectively. (Note: The vending machine can never have more than 7 CHF
inside it) The output can either be 0 or 1 as explained earlier.

3. The state diagram of the finite state machine is shown in Figure 75.

Figure 75: State diagram of the finite state machine for a candy vending machine

4. The logic behind the state diagram and the state/output table is shown next. If
the vending machine has X CHF inside it, and the user inserts Y CHF, then the
new state of the vending machine will be (X + Y ) (mod 8) CHF. As an example,
if the vending machine has 5 CHF inside it, and the user inserts 2 CHF, then the
new state of the vending machine will be (5 + 2) (mod 8) = 7 CHF.
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However, if the vending machine has 5 CHF inside it, and the user inserts 5 CHF,
then the new state of the vending machine will be (5 + 5) (mod 8) = 2 CHF. This
is because the total money the user has inserted is 10 CHF, which is enough for 1
candy bar (which costs 8 CHF), hence 2 CHF is leftover inside the machine. If the
user doesn’t insert any coin (i.e., Y = 0), then the state of the vending machine
remains unchanged. The output of the FSM is 1 if X + Y ≥ 8, to indicate that a
candy bar is available and 0 otherwise.

The state/output table of the finite state machine is shown in Table 5.

Present
State (CHF)

Next State (CHF) Output
In = 0 In = 1 In = 2 In = 5 In = 0 In = 1 In = 2 In = 5

0 0 1 2 5 0 0 0 0
1 1 2 3 6 0 0 0 0
2 2 3 4 7 0 0 0 0
3 3 4 5 0 0 0 0 1
4 4 5 6 1 0 0 0 1
5 5 6 7 2 0 0 0 1
6 6 7 0 3 0 0 1 1
7 7 0 1 4 0 1 1 1

Table 25: State/output table of the finite state machine for a candy vending machine

By using the encoded values of the inputs, outputs, and states, the state/output
table can be used to create the state transition diagram shown in Fig. 75.

Note: Although we used a Mealy FSM, we recommend you to implement it with
a Moore FSM to ensure that the outputs are not a function of the inputs. This
independence of outputs from inputs increases stability of the circuit, as outputs
are not impacted by input glitches. However, a Moore FSM may require more
number of states than a Mealy FSM, but this is generally acceptable given the
improved reliability against input glitches.
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[Exercise 38] Timing Analysis of Synchronous Circuits

Figure 76: Circuit diagram.

Consider the circuit in Figure 76. It consists of three D flip-flops (DFFs) and combina-
tional logic. The flip-flop inputs are D1, D2, and D3, and outputs are Q1, Q2, and Q3,
respectively. The clock delays to these flip-flops are shown as ∆1, ∆2, and ∆3, respect-
ively.

The timing properties of the DFFs are as follows:

• Setup time (tsetup) is 0.6 ns;

• Hold time (thold) is 0.4 ns;

• Clock-to-Q delay (tcQ) between 0.8 ns (min) and 1 ns (max).

The propagation delay of a combinational logic gate is given by tgatedelay = 1 + 0.1k ns,
where k is the number of inputs to the gate.

Find the maximum operating clock frequency (fmax) and determine whether there are
any hold time violations for the following three cases:

a) ∆1 = ∆2 = ∆3 = 0 ns

b) ∆1 = ∆3 = 0 ns, ∆2 = 0.7 ns

c) ∆1 = 1 ns, ∆2 = 0 ns, and ∆3 = 0.5 ns
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[Solution 38] Timing Analysis of Synchronous Circuits

a) ∆1 = ∆2 = ∆3 = 0 ns

Logic gates have the following delays: tNOT = 1.1 ns, tAND = tXOR = 1.2 ns.

The maximum clock frequency is determined by the longest path between a flip-flop
output and a flip-flop input. To find it, we need to enumerate (identify) all paths and
find their max delays (using the maximum value of tcQ). The sum of the path delay and
the setup time of the FF determines the corresponding minimum clock period. Below,
we list all paths and compute their delay, adding to each the setup time of the FF.

• Q1 to D2: tcQ,max + tXOR + tAND + tsetup = 1 + 1.2 + 1.2 + 0.6 = 4 ns

• Q2 to D2: tcQ,max + tXOR + tsetup = 1 + 1.2 + 0.6 = 2.8 ns

• Q2 to D3: tcQ,max + tNOT + tsetup = 1 + 1.1 + 0.6 = 2.7 ns

• Q3 to D1: tcQ,max + tsetup = 1 + 0.6 = 1.6 ns

• Q3 to D2: tcQ,max + tXOR + tAND + tsetup = 1 + 1.2 + 1.2 + 0.6 = 4 ns

The min clock period this circuit can support is determined by the longest-delay path
of all. In this circuit, two longest-delay paths exist: from Q1 to D2 and from Q3 to
D2. Therefore, the min clock period is 4 ns. Finally, the corresponding clock frequency
is fmax = 1/4 ns = 250 MHz. This is the highest frequency on which the circuit can
correctly operate. At a higher clock frequency, setup-time constraints would no longer
be satisfied on at least one of the paths listed above.

To check whether any hold-time violations exist, we need to again enumerate all paths.
This time, we need to find their min delays (using the minimum value of tcQ).

• Q1 to D2: tcQ,min + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns

• Q2 to D2: tcQ,min + tXOR = 0.8 + 1.2 = 2 ns

• Q2 to D3: tcQ,min + tNOT = 0.8 + 1.1 = 1.9 ns

• Q3 to D1: tcQ,min = 0.8 ns

• Q3 to D2: tcQ,min + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns
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The delay of the shortest path of all is 0.8 ns. As this delay is longer than the hold time
(thold =0.4 ns), there are no hold-time violations in the circuit.

b) ∆1 = ∆3 = 0 ns, ∆2 = 0.7 ns

There is clock skew for the paths between flip-flops Q1 and Q2, as well as Q3 and Q2.
Adjusting the max path delays calculated above to account for clock skew, we have:

• Q1 to D2: 4− tskew = 4− (∆2 −∆1) = 4− 0.7 = 3.3 ns

• Q2 to D2: 2.8 ns

• Q2 to D3: 2.7− tskew = 2.7− (∆3 −∆2) = 2.7− (0− 0.7) = 3.4 ns

• Q3 to D1: 1.6 ns

• Q3 to D2: 4− tskew = 4− (∆2 −∆3) = 4− 0.7 = 3.3 ns

The corresponding maximum clock frequency is fmax = 1/3.4 ns = 294 MHz.

Similarly, to find if there are hold-time violations, we need to adjust the min path delays
to account for the clock skew.

• Q1 to D2: 3.2− tskew = 3.2− (∆2 −∆1) = 3.2− 0.7 = 2.5 ns

• Q2 to D2: 2 ns

• Q2 to D3: 1.9− tskew = 1.9− (∆3 −∆2) = 1.9− (0− 0.7) = 2.6 ns

• Q3 to D1: 0.8 ns

• Q3 to D2: 3.2− tskew = 3.2− (∆2 −∆3) = 3.2− 0.7 = 2.5 ns

The delay of the shortest path of all is 0.8 ns, which is greater than the hold time.
Therefore, there are no hold-time violations in the circuit.

c) ∆1 = 1 ns, ∆2 = 0 ns, and ∆3 = 0.5 ns

There is clock skew on all paths between flip-flops. Adjusting the max path delays
calculated above to account for clock skew, we get:

• Q1 to D2: 4− tskew = 4− (∆2 −∆1) = 4− (0− 1) = 5 ns
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• Q2 to D2: 2.8 ns

• Q2 to D3: 2.7− tskew = 2.7− (∆3 −∆2) = 2.7− (0.5− 0) = 2.2 ns

• Q3 to D1: 1.6− tskew = 1.6− (∆1 −∆3) = 1.6− (1− 0.5) = 1.1 ns

• Q3 to D2: 4− tskew = 4− (∆2 −∆3) = 4− (0− 0.5) = 4.5 ns

The corresponding maximum clock frequency is fmax = 1/5 ns = 200 MHz.

Similarly, to find if there are hold-time violations, we need to adjust the min path delays
to account for the clock skew.

• Q1 to D2: 3.2− tskew = 3.2− (∆2 −∆1) = 3.2− (0− 1) = 4.2 ns

• Q2 to D2: 2 ns

• Q2 to D3: 1.9− tskew = 1.9− (∆3 −∆2) = 1.9− (0.5− 0) = 1.4 ns

• Q3 to D1: 0.8− tskew = 0.8− (∆1 −∆3) = 0.8− (1− 0.5) = 0.3 ns

• Q3 to D2: 3.2− tskew = 3.2− (∆2 −∆3) = 3.2− (0− 0.5) = 3.7 ns

The shortest path of all is the path between Q3 and D1. Its delay is 0.3 ns, which is
lower than the hold time (0.4 ns). Therefore, there is a hold-time violation in the circuit
and the circuit may not function reliably regardless of the clock frequency.
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[Exercise 39] Moore Finite State Machine

A state diagram of a Moore finite state machine (FSM) is shown in Figure 77. The FSM
contains a counter, counting the elapsed clock cycles and acting as a simple timer.

While In is 0, the FSM is in the IDLE state. When In becomes 1, the timer is initiated
(reset) and the FSM transitions to state A. The FSM stays in state A for 10 cycles. After
that, the FSM transitions to state B and stays in it for one cycle before returning to the
IDLE state. While the FSM is in states IDLE or B, the timer is not advancing. Implement
this FSM.

Figure 77: State diagram of a Moore FSM with a timer.

a) Fill the state/output table.

b) Implement the FSM in Verilog. Your design should include an active low synchron-
ous reset. The reset clears the counter (i.e., resets all bits to zero) and initializes the FSM
to the IDLE state.
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[Solution 39] Moore Finite State Machine

a)

In this design, we have two variables that contribute to the current state: the state itself
and the counter. The counter is used to count the number of cycles in state A until
counter reaches 9 and we do not care about the counter value when the machine is in
other states. As the question requires, we keep the counter value unchanged when the
machine is in other states.

The state transition logic is given in Table 26. The X in the table represents a don’t care
value.

Table 26: State transition logic for the Moore machine.

Current State Current Counter In Next State Next Counter Out
IDLE X 0 IDLE X 0
IDLE X 1 A 0 0

A X 0 IDLE X 0
A 0 1 A 1 0
A 1 1 A 2 0
A 2 1 A 3 0
A 3 1 A 4 0
A 4 1 A 5 0
A 5 1 A 6 0
A 6 1 A 7 0
A 7 1 A 8 0
A 8 1 A 9 0
A 9 1 B 9 0
B 9 X IDLE 9 1

b)

module outEveryTen (
input clk,
input in,
input resetn, // "n" for negated, active low
output reg out

);

parameter IDLE = 2'b00;
parameter A = 2'b01;
parameter B = 2'b10;
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reg [1:0] current_state;
reg [1:0] next_state;
reg [3:0] count;

// State transition logic
always @(*) begin

next_state = current_state;
case (current_state)

IDLE:
if (in) begin

next_state = A;
end else begin

next_state = IDLE;
end

A:
if (in && count == 9) begin

next_state = B;
end else if (in) begin

next_state = A;
end else begin

next_state = IDLE;
end

B:
next_state = IDLE;

default:
next_state = IDLE;

endcase
end

// output assignment, Out=1 if current_state is B
always @(*) begin

out = 0;
if (current_state == B) begin

out = 1;
end else begin

out = 0;
end

end

// Next state assignment at rising clk edge
always @(posedge clk) begin

if (resetn == 1'b0) begin
current_state <= IDLE;

end else begin
current_state <= next_state;

end
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end

// increment count in state A until it reaches 9
// and when in is high;
// reset count when in is high in IDLE state;
// reset count when reset is active
always @(posedge clk) begin

if (resetn == 1'b0) begin
count <= 0;

end else if (current_state == A && in && count < 9) begin
count <= count + 1;

end else if (current_state == IDLE && in) begin
count <= 0;

end
end

endmodule
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[Exercise 40] Memory

Consider the design shown in Fig. 78. It has four inputs: clock, Init, DataInA, and
an asynchronous Reset (not shown), and no outputs. It contains two memories, two
counters, a comparator, an adder, a subtractor, a multiplexer, and a controller. This
digital design reads bytes from one memory, compares them, adds or subtracts them,
and writes the result to another memory.

Figure 78: Circuit diagram
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PART I: DESCRIPTION OF THE CIRCUIT DIAGRAM

Memory A is an 8 × 8 memory. In other words, it has eight rows, each containing
one byte of data. Memory B is similar: it has four rows, each containing one byte of
data. Both memories have a data input port (DataInA and DataInB, respectively), a
write enable input (WEA and WEB, respectively), and a data output port (Dout1 for
Memory A). The clock input and the data output of Memory B are not shown. Memory
write and read operations are synchronous with the rising edge of the clock.

Up counter A generates the address for Memory A. Similarly, up counter B generates
the address for Memory B. The counters have an enable input (IncA and IncB, respect-
ively). When Init is active, the counters reset to zero.

The Controller is the design’s finite state machine, responsible for generating signals
IncA, IncB, WEA, and WEB.

Besides the above components, the design contains a comparator COMP, an adder (+),
a subtractor (-), and a multiplexer. The comparator takes two 8-bit inputs, compares
them, and produces a one-bit output. The adder (subtractor) adds (subtracts) two 8-bit
inputs and generates an 8-bit output. The multiplexer receives the 8-bit outputs from
the adder and the subtractor and sends one of them to the data input of Memory B.

The comparator receives two bytes from Memory A: Dout2 and Dout1. If Dout2 is
greater than Dout1, the comparator outputs a logic 0; otherwise, it outputs a logic 1.

The adder and subtractor take Dout2 and Dout1 as inputs, perform addition and sub-
traction (Dout2 - Dout1), and output the result.

The multiplexer sends either the result of the addition or the result of the subtraction
to the data input port of Memory B (DataInB). The output of the comparator acts as the
select input of the multiplexer.

PART II: DESIGN FUNCTIONALITY

This circuit operates in three states: READA, COMP, and HALT.

The initial state is the READA state. As long as Init input is active, the circuit remains
in this state. Once Init becomes inactive, counter A counts from 0 to 7, and the data
present at the DataInA input gets written into Memory A. In other words, memory A
gets filled and initialized. The initialization lasts eight clock cycles.

The circuit enters the second state, COMP, in the following clock cycle. It reads the data
bytes from memory A sequentially (one after another) and processes them in pairs.
The processing is done on the pairs of bytes (Dout2 and Dout1) at memory addresses
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0 and 1, 2 and 3, 4 and 5, and 6 and 7. DOut2 and DOut1 are compared, and if DOut2
is greater than DOut1, then DOut1 is subtracted from DOut2. Otherwise, DOut1 is
summed with DOut2. The computation result is written in memory B once every two
clock cycles. When the result is written in Memory B (i.e., once every two clock cycles),
the input address of Memory B is incremented. The up counter B counts from 0 to 3.
COMP state terminates once all bytes in Memory A are read, and all bytes in Memory
B are updated. If Init is active, the circuit returns to the start of READA state.

In the following clock cycle, the circuit enters the last (third) phase, HALT, which halts
the computation. The counters stop counting, and reading from and writing to memor-
ies stop as well. If Init is active, the circuit returns to the start of READA state.

Answer the questions below.

a) Fill the timing diagrams in Figure 79. You can assume that Init and Reset are in-
active. The diagram is split into two parts for space reasons. It covers 20 clock cycles.
Labels A0, A1, ..., and A7 are the placeholders for a sequence of values appearing at
the DataInA input (in cycles 0, 1, ..., 7). They should not be interpreted as hexadecimal
values.

Figure 79: Timing diagram for the memory processing design.
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b) Draw the state diagram of this memory processing design.

c) Draw the state transition table for the Controller module.

d) Write the Verilog description of the design in Fig. 78. To model the memory, write a
single parameterized module, containing an internal memory array variable called mem.
The flip-flops in the counters and the controller state register have an asynchronous
power-on reset, to which Reset signal is connected (not shown in Fig. 78).

Hint: In Verilog, addition and subtraction can be easily modeled with + and -.

The testbench is available for download on Moodle. It requires the module to have
the interface below. You are free to add more test cases in the testbenches to test your
design comprehensively.

module memProcessing (
input clock,
input Reset,
input Init,
input [7:0] DataInA,

);

It also expects Memory B to be named MemoryB.
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[Solution 40] Memory

a) The timing diagram can be seen in Figure 80.

Figure 80: Solution of the timing diagram for the memory processing design.

b) The state diagram is given in Figure 81.

198 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 40
Digital Logic and Design with Verilog

Exercise Book
CS-173 Fundamentals of Digital Systems

Figure 81: State diagram for the memory processing design.

c) The state transition table of the Controller is given in Table 27. CntA and CntB stand
for the outputs of the counters, i.e., AddrA and AddrB in Fig. 78.
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Table 27: State transition table of the Controller.

Current Input Current Next Outputs
State Init CntA CntB State CntA CntB IncA IncB WEA WEB

READA 0 0 0 READA 1 0 1 0 1 0
READA 0 1 0 READA 2 0 1 0 1 0
READA 0 2 0 READA 3 0 1 0 1 0
READA 0 3 0 READA 4 0 1 0 1 0
READA 0 4 0 READA 5 0 1 0 1 0
READA 0 5 0 READA 6 0 1 0 1 0
READA 0 6 0 READA 7 0 1 0 1 0
READA 0 7 0 COMP 0 0 1 0 1 0
COMP 0 0 0 COMP 1 0 1 0 0 0
COMP 0 1 0 COMP 2 0 1 0 0 0
COMP 0 2 0 COMP 3 1 1 1 0 1
COMP 0 3 1 COMP 4 1 1 0 0 0
COMP 0 4 1 COMP 5 2 1 1 0 1
COMP 0 5 2 COMP 6 2 1 0 0 0
COMP 0 6 2 COMP 7 3 1 1 0 1
COMP 0 7 3 COMP 0 3 1 0 0 0
COMP 0 0 3 HALT 0 0 0 1 0 1
HALT 0 0 0 HALT 0 0 0 0 0 0

READA 1 X X READA 0 0 X X X X
COMP 1 X X READA 0 0 X X X X
HALT 1 X X READA 0 0 X X X X

d) The Verilog code for the design is given below.

module mem (addr, data_in, we, clock, data_out);
parameter Nawidth = 3; // default 2ˆ3 = 8 lines
parameter Ndwidth = 8; // default 8 bits per line
input we, clock; // write enable and clock
input [Nawidth-1:0] addr;
input [Ndwidth-1:0] data_in;
output reg [Ndwidth-1:0] data_out;

// memory array
reg [Ndwidth-1:0] mem [2**Nawidth-1:0];

always @(posedge clock) begin
if (we) begin

// synchronous write
mem[addr] <= data_in;

end
// synchronous read
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data_out <= mem[addr];
end

endmodule

module memProcessing (
input clock,
input Reset,
input Init,
input [7:0] DataInA

);

// State definitions
parameter READA = 2'b00;
parameter COMP = 2'b01;
parameter HALT = 2'b10;

// Wire and register definitions
reg [2:0] AddrA;
reg [1:0] AddrB;
wire [7:0] DOut1;
reg [7:0] DOut2;
reg [7:0] DataInB;
reg [7:0] ADDOut;
reg [7:0] SUBOut;
reg Sign;

reg IncA;
reg IncB;
reg WEA;
reg WEB;

reg [1:0] state;
reg [1:0] next_state;

// Memory A
mem #(.Nawidth(3), .Ndwidth(8)) MemoryA (

.clock(clock),

.addr(AddrA),

.data_in(DataInA),

.we(WEA),

.data_out(DOut1)
);

// Memory B
mem #(.Nawidth(2), .Ndwidth(8)) MemoryB (

.clock(clock),
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.addr(AddrB),

.data_in(DataInB),

.we(WEB)
);

// State transition logic
always @(*) begin

// Initialize
next_state = state;

// Assign
case (state)

READA:
if (Init) next_state = READA;
else if (AddrA == 7)

next_state = COMP;
else

next_state = READA;
COMP:

if (Init) next_state = READA;
else if (AddrA == 0 && AddrB == 3)

next_state = HALT;
else

next_state = COMP;
HALT:

if (Init) next_state = READA;
else next_state = HALT;

default:
next_state = HALT;

endcase
end

// State assignment logic
always @(posedge clock or posedge Reset) begin

if (Reset) state <= READA;
else state <= next_state;

end

// Controller output logic
always @(*) begin
// Initialize

WEA = 0;
IncA = 0;
WEB = 0;
IncB = 0;
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// Assign
case (state)

READA: begin
// Write and increment A
WEA = 1;
IncA = 1;
WEB = 0;
IncB = 0;

end
COMP: begin

// Never write to A
WEA = 0;
// Increment A until we finish reading
// i.e. check if AddrA wrapped around
if (AddrA == 0 && AddrB == 3)

IncA = 0;
else

IncA = 1;
// Write and increment B every 2 cycles
// i.e. check the last bit of AddrA
// and dont write and increment in the first cycle
if (AddrA[0] == 0 && !(AddrA == 0

&& AddrB == 0)) begin
WEB = 1;
IncB = 1;

end else begin
WEB = 0;
IncB = 0;

end
end
HALT: begin

// Halt and do nothing
WEA = 0;
IncA = 0;
WEB = 0;
IncB = 0;

end
default: begin

WEA = 0;
IncA = 0;
WEB = 0;
IncB = 0;

end
endcase

end
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// Counter logic for AddrA
always @(posedge clock or posedge Reset) begin

if (Reset) AddrA <= 0;
else if (Init) AddrA <= 0;
else if (IncA) AddrA <= AddrA + 1;

end

// Counter logic for AddrB
always @(posedge clock or posedge Reset) begin

if (Reset) AddrB <= 0;
else if (Init) AddrB <= 0;
else if (IncB) AddrB <= AddrB + 1;

end

// DOut2 logic
always @(posedge clock or posedge Reset) begin

if (Reset) DOut2 <= 0;
else if (Init) DOut2 <= 0;
else DOut2 <= DOut1;

end

// Data processing logic
always @(*) begin

// Initialize
ADDOut = 0;
SUBOut = 0;
Sign = 0;
DataInB = 0;

// Assign
ADDOut = DOut2 + DOut1;
SUBOut = DOut2 - DOut1;
Sign = DOut2 <= DOut1;

if (Sign) DataInB = ADDOut;
else DataInB = SUBOut;

end
endmodule
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[Exercise 41] Two Input Sequence Detector

Given two 1-bit inputs w1 and w2, your task is to design a Moore finite state machine
(FSM) that outputs a high signal when w1 is equal to w2 for four consecutive clock
cycles or more. The initial output of the FSM is 0, and an asynchronous power-on
active-high reset signal is used to reset the FSM to its initial state. Below is an example
of sequence detection:

w1: 0 1 1 0 1 1 1 0 0 0 1 1 0
w2: 1 1 1 0 1 0 1 0 0 0 1 1 1
output: 0 0 0 0 1 0 0 0 0 1 1 1 0

a) How many states are required to design the FSM?

b) Draw the state diagram of the FSM by clearly indicating the states and transitions.

c) Derive the state/output table of the FSM.

d) Implement the FSM in Verilog. Use the state/output table specification with the re-
commended guidelines, that is, to use three always blocks as it is easy to read, manage,
and implement.
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[Solution 41] Two Input Sequence Detector

a) The FSM requires five states to detect the sequence:

• State A: Zero matches (also the initial state)

• State B: Detected one match

• State C: Detected two matches

• State D: Detected three matches

• State E: Detected four or more matches

b) First, let us define an intermediate signal w that is high when w1 is equal to w2 in a
particular clock cycle and low otherwise. The state diagram of the FSM is as follows:

Figure 82: State diagram of the FSM

c) The state/output table of the FSM is as follows:

Present
State

Next
State Output

(Z)
w = 0 w = 1

A A B 0
B A C 0
C A D 0
D A E 0
E A E 1

Table 28: State/output table
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d) Below is the Verilog description of the module:

module sequence_detector(
input clk,
input reset,
input w1,
input w2,
output reg Z

);
reg w;
reg [2:0] state, next_state;
parameter A = 3'b000, B = 3'b001,

C = 3'b010, D = 3'b011, E = 3'b100;

always @(*) begin
next_state = A;
w = (w1 == w2) ? 1 : 0;
if (w == 1) begin

case (state)
A: next_state = B;
B: next_state = C;
C: next_state = D;
D: next_state = E;
E: next_state = E;
default: next_state = A;

endcase
end else begin

next_state = A;
end

end

always @(posedge clk, reset)
begin

if (reset) begin
state <= A;

end else begin
state <= next_state;

end
end

always @(*) begin
Z = (state == E) ? 1'b1: 1'b0;

end
endmodule
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e) Below is a testbench to verify the functionality of the FSM that uses the example
sequence provided in the question:

module testbench;

reg clk, w1, w2, reset;
wire Z;

sequence_detector dut (
.clk(clk),
.reset(reset),
.w1(w1),
.w2(w2),
.Z(Z)

);

initial begin
$dumpfile("tb_sequence_detector.vcd");
$dumpvars(0, testbench);

clk = 0; reset = 1;
w1 = 0; w2 = 1; #10; reset = 0;
if (Z != 0)

$error("Cycle 0 failed; expected 0, got %b", Z);
w1 = 1; w2 = 1; #10;
if (Z != 0)

$error("Cycle 1 failed; expected 0, got %b", Z);
w1 = 1; w2 = 1; #10; // same
if (Z != 0)

$error("Cycle 2 failed; expected 0, got %b", Z);
w1 = 0; w2 = 0; #10; // same
if (Z != 0)

$error("Cycle 3 failed; expected 0, got %b", Z);
w1 = 1; w2 = 1; #10; // same
if (Z != 1)

$error("Cycle 4 failed; expected 1, got %b", Z);
w1 = 1; w2 = 0; #10; // different
if (Z != 0)

$error("Cycle 5 failed; expected 0, got %b", Z);
w1 = 1; w2 = 1; #10; // same
if (Z != 0)

$error("Cycle 6 failed; expected 0, got %b", Z);
w1 = 0; w2 = 0; #10; // same
if (Z != 0)

$error("Cycle 7 failed; expected 0, got %b", Z);
w1 = 0; w2 = 0; #10; // same
if (Z != 0)
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$error("Cycle 8 failed; expected 0, got %b", Z);
w1 = 0; w2 = 0; #10; // same
if (Z != 1)

$error("Cycle 9 failed; expected 1, got %b", Z);
w1 = 1; w2 = 1; #10; // same
if (Z != 1)

$error("Cycle 10 failed; expected 1, got %b", Z);
w1 = 1; w2 = 1; #10; // same
if (Z != 1)

$error("Cycle 11 failed; expected 1, got %b", Z);
w1 = 0; w2 = 1; #10; // different
if (Z != 0)

$error("Cycle 12 failed; expected 0, got %b", Z);
$finish;

end

always begin
#5 clk = ~clk;

end
endmodule

Version 1.0 of 26th May 2025, EPFL ©2025 209 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Exercise 42
Digital Logic and Design with Verilog

[Exercise 42] Bit counting

a) Write the Verilog description of a Moore FSM designed to count the number of bits
with value one stored in an 8-bit shift register. The shift register consists of eight D
flip-flops connected together in a chain as follows:

An 8-bit value can be loaded into the shift register in one clock cycle, but only the
LSB (i.e., the value stored in the rightmost D flip-flop) can be read in one clock cycle.
When enabled, the shift register shifts its stored value right by one position, i.e., each
D flip-flop reads the value of the D flip-flop to its left.

The Verilog module should have the following interface and name:

module bit_counter(
input clk,
input reset,
input [7:0] load_data,
input load,
input enable,
output reg [3:0] count,
output reg done

);

The functionality of this module should be as follows:

• The reset is an active-high asynchronous signal and used to reset the FSM.

• The load data value should be loaded when the load signal is high.

• The enable signal is used to enable the FSM, i.e, if the enable signal is low, this
entire operation should be paused.

• The count output should store the number of bits with value one in the 8-bit
vector.

• The done output should be high when the counting is done.
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The operation of this module can be described by the following logic:

After the circuit is reset, FSM is set to state S1. In state S1, when the load signal is set
to one, the data on the load data input is loaded into the internal 8-bit register. When
the enable signal is set to one, the next rising edge of the clock causes the FSM to
change to state S2. In state S2, at each rising edge of the clock, if the value of the LSB of
the internal 8-bit register is one, the value of the count output is incremented by one.
The value of the internal 8-bit register is then shifted to the right. When the internal
8-bit register becomes zero, the FSM goes to state S3, which means the counting has
finished, and the done signal is set to one. To start counting again with new data, the
entire process is repeated.

b) Use the testbench below to verify the functionality of your Verilog module. Analyze
the waveforms of your module to see if it acts as expected.

module bit_counter_tb;
reg [7:0] load_data;
reg clk, reset, load, enable;
wire [3:0] count;
wire done;

bit_counter dut (.clk(clk), .reset(reset),
.load_data(load_data), .load(load),
.enable(enable), .count(count), .done(done)

);

initial begin
$dumpfile("dump.vcd");
$dumpvars(0, bit_counter_tb);
clk = 0;
reset = 1;
enable = 0;
load = 0;
load_data = 8'b10111001;
#10 reset = 0;
load = 1;
#10 load = 0;
#10 enable = 1;
#150
$finish;

end

always #5 clk = ~clk;
endmodule
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[Solution 42] Bit counting

a) Below is a possible Verilog description of the module:

module bit_counter(
input clk,
input reset,
input [7:0] load_data,
input load,
input enable,
output reg [3:0] count,
output reg done

);
reg [7:0] val, next_val; // Internal 8-bit register value
reg [1:0] state, next_state; // To keep track of the state
reg [3:0] next_count; // To keep track of count

// Three states are needed
parameter S1 = 2'b00, S2 = 2'b01, S3 = 2'b10;

// Logic to determine the next state, value and count
always @(*) begin

next_state = S1;
next_val = 8'b0;
next_count = 4'b0;
case (state)

S1: begin
next_state = (enable == 1'b1) ? S2 : S1;
next_val = (load == 1'b1) ? load_data : val;
next_count = 4'b0;

end
S2: begin

next_state = (val == 8'b0) ? S3 : S2;
next_val = (enable == 1'b1) ? val >> 1 : val;
next_count = ((val[0] == 1'b1) & (enable == 1'b1)) ?

count + 1 : count;
end
S3: begin

next_state = (load == 1'b1) ? S1 : S3;
next_val = val;
next_count = count;

end
default: begin

next_state = S1;
next_val = 8'b0;
next_count = count;
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end
endcase

end

// Logic to update FFs
always @(posedge clk or posedge reset) begin

if (reset) begin
state <= S1;
val <= 8'b0;
count <= 4'b0;

end else begin
state <= next_state;
val <= next_val;
count <= next_count;

end
end

// Logic to change the output signal done
always@(*) begin

done = (state == S3);
end

endmodule

b) The simulation obtained with the above description:
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[Exercise 43] Moore FSM

The state diagram of a Moore machine with one bit input w and one bit output z is
given below. The machine has three states, A, B, and C. The output z is one when
the machine is in state C and 0 otherwise. The machine has a synchronous active-high
reset signal rst and the initial state is A.

The states are encoded with two bits and their corresponding values are as follows:
A = (00)2, B = (01)2, and C = (11)2.

a) Draw the state transition table of this Moore machine.

b) Draw the circuit of this state machine using only two-input and three-input AND
gates and two-input OR gates. You can use the inverted outputs of the flip-flops.

c) Find the maximum operating frequency of the implementation of the circuit in part
(b) with the following timing constraints:

• tsetup = 100 ps

• thold = 100 ps

• tcQ,min (minimum clock-to-q delay)= 150 ps

• tcQ,max (maximum clock-to-q delay)= 200 ps

• tAND2 = 300 ps

• tAND3 = 400 ps

• tOR2 = 400 ps
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[Solution 43] Moore FSM

a) The state transition table of the Moore machine is as follows:

Current State Input Reset Next State Output
y1y0 w rst y′1y

′
0 z

00 0 0 00 0
00 1 0 01 0
01 0 0 01 0
01 1 0 11 0
11 0 0 00 1
11 1 0 01 1
00 x 1 00 0
01 x 1 00 0
11 x 1 00 1

b) The circuit of the Moore machine is given below. Please note that the flip-flops have
synchronous reset inputs. The next state and output logic is as follows:

• y′1 = y1y0w

• y′0 = w + y1y0

• z = y1

c) The fastest clock frequency is obtained when

tcQ,max + tcomb, max + tsetup = TCLK = 1/fCLK
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The longest combinatorial path goes through one two-input AND gate and one two-
input OR gate, giving:

200 ps + 300 ps + 400 ps + 100 ps = TCLK = 1000 ps

f = 1/(1000× 10−12 s) = 1× 109 Hz = 1 GHz

216 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Exercise 1
RISC-V

Exercise Book
CS-173 Fundamentals of Digital Systems

Part III: RISC-V

[Exercise 1] My First Program

Let us write a simple program that adds two 32-bit integer variables and stores the
result in a third one. To get started, follow the steps below:

1. Open Visual Studio Code

2. Create a new file and save it as add.s

3. Write the following code in the file

li t0, 0xDDDDDDDD
li t1, 13623570
add t2, t0, t1
nop

4. From the sidebar, open the Run and Debug menu and click on the button of the
same name (see Fig. 83).
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Figure 83: Run and Debug

As a result, more windows will open (see Fig. 84). The newly open left window
provides multiple sections that will be useful for debugging, in particular:

• VARIABLES / Integer: Displays the registers and their contents. You can
also modify them for debugging purposes.

• BREAKPOINTS: Manage breakpoints, which are used to pause the pro-
gram’s execution at a specific line of code.

• VENUS OPTIONS / Views: Toggle components (Memory, LEDs, etc.).

• VENUS OPTIONS / Set variable format: Change the number representa-
tions (Bin/Dec/Hex).

Figure 84: Debug view
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This simple program has four lines of code, performing the following operations:

1. Line 1: Write the immediate value 0xDDDDDDDD into register t0.

2. Line 2: Write the immediate value 13623570 into register t1.

3. Line 3: Add the values of registers t0 and t1 and save the result in register t2.

4. Line 4: No operation. Adding this seemingly useless line of code allows us to
observe the result of the addition (i.e., the contents of register t2) before the pro-
gram ends.

The next step is to use the debugging tools to see the result of the addition. Start
by adding a breakpoint on line four by clicking left to the line number. Adding the
breakpoint at this location will pause the program’s execution immediately after the
addition. Then, run the program and press Continue once (see Fig. 85).

Figure 85: Debugging steps

Continue runs the program up to the next breakpoint, whereas Step over would execute
one program line.

The program has now been paused after the addition. Look at the variables (Integer
section) to find the contents of register t2. What do you see? Remember that to change
the format of the registers, you should navigate to ”Venus Options” and ”Set Variable
Format.”
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[Solution 1] My First Program

The value of the register at the end of the program is 0xDEADBEEF (see Fig. 86).

Figure 86: Register values at the end of the program

Note: This exercise is a simple introduction to the debugging tools inspired by the
[RISC-V Venus Simulator embedded in VS Code page]. This page contains multiple
exercises to help you get started with the debugging tools, although most of them
cover more advanced topics. We encourage you to explore them to get a better under-
standing of what Venus offers.
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[Exercise 2] Bit Busters

Alice tried to write a program to count the number of bits set to one in a register. The
program is as follows:

li x1, 0x00123456
li x2, 0
li x3, 1
li x4, 0

loop:
and x4, x1, x3
add x2, x2, x4
srai x1, x1, 1
bne x1, x0, loop

Note that register x0 is hardwired to constant zero (i.e., its contents cannot be
changed).

a) Run the program and keep track of the value of register x1 at the beginning of each
of the first five iterations of the loop. When does the program terminate? What is the
final value of register x2?

b) Bob took Alice’s code and ran it with the value 0x8BADF00D in register x1. Surpris-
ingly, Bob found that the result was not what he expected.

Repeat Bob’s experiment: run the program and note the value of register x1 at the
beginning of each of the first five iterations of the loop. When does the program ter-
minate? Can you find the issue with Alice’s code and fix it?

Version 1.0 of 26th May 2025, EPFL ©2025 221 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Solution 2
RISC-V

[Solution 2] Bit busters

a) Set a breakpoint at the beginning of the loop (line seven) and run the program. We
then press continue to run the program until the next breakpoint. We repeat this four
more times to get the value of x1 at the beginning of the first five iterations of the loop.
The value of the register x1 at each iteration is:

Iteration Hexadecimal Binary
0 0x00123456 0b00000000000100100011010001010110
1 0x00091A2B 0b00000000000010010001101000101011
2 0x00048D15 0b00000000000001001000110100010101
3 0x0002468A 0b00000000000000100100011010001010
4 0x00012345 0b00000000000000010010001101000101

One easy way to find the value of x2 at the end of the program is to insert a dummy
instruction at the end of the program, such as nop. We add a breakpoint on that line
and disable other breakpoints. We then run the program and press continue. The value
of x2 at the end of the program is nine.

b) The value of register x1 at the beginning of the first five iterations of the loop are as
follows:

Iteration Hexadecimal Binary
0 0x8BADF00D 0b10001011101011011111000000001101
1 0xC5D6F806 0b11000101110101101111100000000110
2 0xE2EB7C03 0b11100010111010110111110000000011
3 0xF175BE01 0b11110001011101011011111000000001
4 0xF8BADF00 0b11111000101110101101111100000000

The program should terminate when x1 equals zero. However, as the table above
shows, the value of x1 will never be zero.

The issue with Alice’s program is that it uses a srai instruction to shift the value of x1
to the right. This instruction fills the most significant bits with the sign bit, which is one.
Therefore, the value of x1 will never be zero, and the program will never terminate.

We should use the srli instruction instead of srai to fix this issue.

An alternative and less error-prone implementation of bit counting algorithm would
be to terminate the loop after exactly 32 iterations.
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[Exercise 3] Understanding and Encoding Instructions

Consider the following RISC-V instructions:

1. add t0, t1, t2

2. slt t4, s0, s3

3. sltu t2, t2, t5

4. addi t0, t1, 16

5. slli s2, s2, 0x3

6. lui t6, 0x00012300

Answer the question below for each instruction:

a) Assuming the instruction is stored at addresses 0x0, determine the value of the data
byte found at memory address 0x2. Consider little-endian byte order.
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[Solution 3] Understanding and Encoding Instructions

a) Below are the RISC-V binary and hexadecimal encoding of each instruction.

1. add t0, t1, t2:

funct7 rs2 rs1 funct3 rd opcode
0000000 00111 00110 000 00101 0110011

Hexadecimal: 0x007302B3

The value of the data byte at memory address 0x2 is 0x73.

2. slt t4, s0, s3:

funct7 rs2 rs1 funct3 rd opcode
0000000 10011 01000 010 11101 0110011

Hexadecimal: 0x01342EB3

The value of the data byte at memory address 0x2 is 0x34.

3. sltu t2, t2, t5:

funct7 rs2 rs1 funct3 rd opcode
0000000 11110 00111 011 00111 0110011

Hexadecimal: 0x01E3B3B3

The value of the data byte at memory address 0x2 is 0xE3.
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4. addi t0, t1, 16:

imm[11:0] rs1 funct3 rd opcode
000000010000 00110 000 00101 0010011

Hexadecimal: 0x01030293

The value of the data byte at memory address 0x2 is 0x03.

5. slli s2, s2, 0b011:

shamt rs1 funct3 rd opcode
000000000011 10010 001 10010 0010011

Hexadecimal: 0x00391913

The value of the data byte at memory address 0x2 is 0x39.

6. lui t6, 0x00012300:

imm[31:12] rd opcode
00010010001100000000 11111 0110111

Hexadecimal: 0x12300FB7

The value of the data byte at memory address 0x2 is 0x30.
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[Exercise 4] Triple XOR

Consider the following sequence of RISC-V instructions:

xor t0, t0, t2
xor t2, t0, t2
xor t0, t0, t2

Suppose the initial values in registers t0 and t2 are 0x12345678 and 0xABCDEF00,
respectively.

a) Determine the values in registers t0 and t2 after executing each instruction in the
sequence. Verify your answers with the help of the Venus RISC-V simulator.

b) What has this sequence of xor instructions achieved? Knowing the properties of
the XOR logic operation, explain why the values in the registers change the way you
observed, after each instruction.
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[Solution 4] Triple XOR

a) The values in registers t0 and t2 after executing each instruction in the sequence
are:

After execution of instruction t0 t2
0 (Initally) 0x12345678 0xABCDEF00

1 0xB9F9B978 0xABCDEF00
2 0xB9F9B978 0x12345678
3 0xABCDEF00 0x12345678

b) The purpose of this sequence of instructions is to swap the values in registers t0
and t2. This is a known technique for swapping the values of two variables without
using a temporary variable. The sequence of instructions can be explained as follows:

1. xor t0, t0, t2 — This XORs the value of t0 with the value of t2 and writes
the result back in t0. So t0 now contains the value t0⊕t2.

2. xor t2, t0, t2 — This XORs the new value in t0 (which is t0⊕t2) with the
original value of t2, and writes the result in t2. This effectively assigns t2 the
initial value of t0, because:

(t0⊕ t2)⊕ t2 = t0⊕ (t2⊕ t2)

= t0⊕ 0

= t0

3. xor t0, t0, t2— This XORs the value in t0 (which is t0⊕t2) with the value
in t2 (which is now the original value of t0), and writes the result back in t0.
This completes the swap, because:

(t0⊕ t2)⊕ t0 = t0⊕ (t0⊕ t2)

= (t0⊕ t0)⊕ t2

= 0⊕ t2

= t2
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[Exercise 5] Checking for Overflows

In many programming environments, ignoring arithmetic overflow can lead to un-
expected results. In particular, RISC-V relies on software to handle overflow check-
ing. This means that developers must implement their own mechanisms to detect and
handle overflow conditions in their code.

Your task in this exercise is to write RISC-V assembly code to handle overflow detec-
tion for both unsigned and signed integer addition. If an overflow occurs, you should
set a flag in the temporary register t6, i.e. set the value of t6 to one.

a) Write a sequence of RISC-V instructions to detect overflow in unsigned integer ad-
dition.

Hint: Recall the sltu instruction (Set Less Than Unsigned). You may use it to compare
two registers as if they were unsigned integers and set the value of the destination
register to one.

b) Write a sequence of RISC-V instructions to detect overflow in signed integer addi-
tion.

Hint: You should make a total of three comparisons to detect overflow in signed integer
addition.
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[Solution 5] Checking for Overflows

a) Unsigned addition overflows when the result is smaller than either of the operands.
The following sequence of instructions detects overflow in unsigned integer addition:

add t0, t1, t2
sltu t6, t0, t1

To see how this code works, let’s consider the following example. Let:

t1 = 0xFFFFFFFF
t2 = 0x00000001

Then:

add t0, t1, t2 # t0 = 0x00000000
# (overflow occurred)

sltu t6, t0, t1 # (0 < 0xFFFFFFFF) = 1

So, t6 is set to 1, indicating that an unsigned overflow has occurred.

b) The idea is that the sum of the two registers should be less than one of the operands
if and only if the other operand is negative. The following sequence of instructions
detects overflow in signed integer addition:

add t0, t1, t2 # t0 = t1 + t2
slti t3, t2, 0 # t3 = (t2 < 0) ? 1 : 0
slt t4, t0, t1 # t4 = (t0 < t1) ? 1 : 0
xor t6, t3, t4 # t6 = t3 ˆ t4

Below is the explanation of the code:

• add t0, t1, t2: Computes the sum of t1 and t2 and writes the result in t0.

• slti t3, t2, 0: Sets t3 to one if the value in t2 is negative, and to zero
otherwise.

• slt t4, t0, t1: Sets t4 to one if t0, i.e., t1 + t2, is less than t1, and to zero
otherwise.

• xor t6, t3, t4: Checks whether both t3 and t4 flags are set. If only one of
them is set, signed overflow has occurred.
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To see how this code works in practice, let’s walk through examples. Note that signed
overflow occurs when:

• Adding two positive numbers produces a negative result.

• Adding two negative numbers produces a positive result.

Case 1: adding two positive numbers

Let:

t1 = 0x7FFFFFFF
t2 = 0x00000001

Then:

add t0, t1, t2 # t0 = 0x80000000
slti t3, t2, 0 # t3 = 0
slt t4, t0, t1 # t4 = 1
xor t6, t3, t4 # t6 = 1

So, t6 is set to 1, indicating signed overflow.

Case 2: adding two negative numbers

Let:

t1 = 0x80000000
t2 = 0xFFFFFFFF

Then:

add t0, t1, t2 # t0 = 0x7FFFFFFF
slti t3, t2, 0 # t3 = 1
slt t4, t0, t1 # t4 = 0
xor t6, t3, t4 # t6 = 1

Again, t6 is set to 1, correctly detecting signed overflow.
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[Exercise 6] Encoding Branches and Memory Instructions

Consider the following instructions:

1 beq t0, t1, 42
2 bltu s1, s2, -4
3 lw t2, 12(s3)
4 sb t0, 4(s6)

For each instruction, write the binary and hexadecimal encoding of the instruction in
RISC-V.
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[Solution 6] Encoding Branches and Memory Instructions

Below are the RISC-V binary and hexadecimal encoding of each instruction.

1. beq t0, t1, 42:

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode
0|000001 00110 00101 000 0101|0 1100011

Hexadecimal: 0x02628563

2. bltu s1, s2, -4:

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode
1|111111 10010 01001 110 1110|1 1100011

Hexadecimal: 0xFF24EEE3

3. lw t2, 12(s3):

imm[11:0] rs1 funct3 rd opcode
000000001100 10011 010 00111 0000011

Hexadecimal: 0x00C9A383

4. sb t0, 4(s6):

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode
0000000 00101 10110 000 00100 0100011

Hexadecimal: 0x005B0223
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[Exercise 7] Understanding RISC-V (II)

Consider the following RISC-V program. Registers s0 and s1 are initialized as follows:

• s0: The starting memory address of a contiguous data array of 32-bit integers.

• s1: The number of elements in the data array.

mysteriouscode:
li t0, 0
add t1, zero, s0
lw t2, 0(s0)
lw t3, 0(s0)

label0:
lw t5, 0(t1)
slt t4, t2, t5
bne t4, zero, label1
add t2, zero, t5

label1:
slt t4, t5, t3
bne t4, zero, label2
add t3, zero, t5

label2:
addi t0, t0, 1
addi t1, t1, 4
bne s1, t0, label0
add t4, t2, t3
srai s2, t4, 1

a) This program computes something and places the result in register s2. Describe in
a sentence what the program computes. Is the result it produces always accurate, i.e.,
is it an approximate or the exact value?

b) Does the code assume the array contains signed or unsigned integers? Explain your
answer. Knowing which of the two data types the code currently supports, propose
code modifications necessary to handle the currently unsupported data type.
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[Solution 7] Understanding RISC-V (II)

a) The program’s purpose is to find the arithmetic mean of the array’s minimum and
maximum values.

The reported mean is not always accurate. Rather, it is an approximate and not an
exact value because of the integer division by two in the last instruction.

A commented version of the code with an example array that can be run directly in
VSCode is given below:

.data
array: .word 2, -1, 10, 90, -7, 40, 96, 23

.text
la s0, array # s0 points to the array
li s1, 8 # loading length of array in s1

mysteriouscode:
li t0, 0 # init element counter (t0)
add t1, zero, s0 # t1 points to 1st element of array
lw t2, 0(s0) # init min val (t2) with 1st elem
lw t3, 0(s0) # init max val (t3) with 1st elem

label0:
lw t5, 0(t1) # load the current element into t5
slt t4, t2, t5 # (t2 (min) >= t5 (curr)) => t4 = 0
bne t4, zero, label1 # if min < current, skip min update
add t2, zero, t5 # update min value in t2

label1:
slt t4, t5, t3 # (t5 (curr) >= t3 (max)) => t4 = 0
bne t4, zero, label2 # if curr < max, skip max update
add t3, zero, t5 # update max value in t3

label2:
addi t0, t0, 1 # increment element counter
addi t1, t1, 4 # move to next element
bne s1, t0, label0 # repeat as long as elements remain
add t4, t2, t3 # t4 = min + max
srai s2, t4, 1 # s2 = (min + max)/2

b) The elements of the array pointed to by s0 must be signed because the comparisons
used to find the maximum and minimum are done on signed numbers using the slt
instruction. The mean calculations are also done using signed numbers. Thus the
program must be modified as follows to handle unsigned numbers:
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...
slt t4, t2, t5 => sltu t4, t2, t5
...
slt t4, t5, t3 => sltu t4, t5, t3
...
srai s2, t4, 1 => srli s2, t4, 1
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[Exercise 8] Comparing Signs

Write a program in RISC-V assembly that analyzes two data arrays of the same size,
each containing 32-bit signed integers. The program compares the sign of the element
at index i of the first array with the sign of the element at the same index i of the second
array, covering all indices i from the beginning to the end of the arrays. The program
reports the number of times the comparison revealed the signs were different.

You can assume that the registers s0, s1, and s2 are initialized as follows:

• s0: The memory address of the first data array.

• s1: The memory address of the second data array.

• s2: The number of elements in each of the two data arrays.

Your program should not modify the above registers. At the end, register s3 should
contain the result, i.e., the number of times the elements at the same index in both
arrays had different signs.
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[Solution 8] Comparing Signs

The RISC-V program is given below. Two arrays of 32 bits are written in the data
section to serve as input for the program. The program compares the sign of each pair
of elements from the two arrays and counts the number of pairs with different signs.

.data
arr1: .word 2, -3, 10, -5, 7, 200, -100, 23
arr2: .word 1, 3, 11, 6, 6, -10, 27, -57

.text
la s0, arr1 # Load address of 1st array into s0
la s1, arr2 # Load address of 2nd array into s1
li s2, 8 # Number of elements in the arrays

li s3, 0 # init counter/result
beq s2, zero, finish # if no elements, finish

add t0, zero, s0 # t0 points at 1st array elements
add t1, zero, s1 # t1 points at 2nd array elements
add t6, zero, s2 # copy number of elements to t6

loop:
lw t3, 0(t0) # load an element from 1st array
lw t4, 0(t1) # load an element from 2nd array
xor t5, t3, t4 # t5 = t3 XOR t4
srli t5, t5, 31 # t5 = sign bit of t3 XOR t4
add s3, s3, t5 # add sign bit to counter

addi t6, t6, -1 # decrement remaining elements
addi t0, t0, 4 # move to next element in 1st array
addi t1, t1, 4 # move to next element in 2nd array
bne t6, zero, loop # repeat if more elements

finish:
nop # end of program
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[Exercise 9] A Special Addition

As we know, RISC-V registers are 32 bits wide. Sometimes, however, it might be ne-
cessary to perform operations on numbers that are larger than 32 bits. Keeping this
context in mind, consider the following RISC-V program:

add t0, t2, t4
sltu t6, t0, t2
add t7, t3, t5
add t1, t7, t6

Describe in a sentence what the program does. What is the purpose of the sltu in-
struction? What is the purpose of the add instructions that follow it?
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[Solution 9] A Special Addition

The program performs multi-word unsigned addition—a technique for adding num-
bers larger than the processor’s word size. In the RISC-V RV32I architecture, the
processor’s word size is 32 bits, meaning each register can hold 32 bits of data. For
numbers larger than 32 bits, the value is split and held across multiple registers. For
example, a 64-bit number is divided into two 32-bit parts, each placed in a separate
register.

To perform multi-word unsigned addition, i.e., adding numbers that are split into mul-
tiple words, the lower 32 bits of the 64-bit number are added first, followed by the
upper 32 bits. The addition of the lower 32 bits might also generate a carry, which can
be detected by checking for the overflow. The generated carry should also be added to
the addition of the upper 32 bits.

Let’s break down the program:

• add t0, t2, t4: Adds the lower 32 bits of the two 64-bit numbers.

• sltu t6, t0, t2: By checking for overflow in the addition of the lower 32
bits, we can determine whether a carry was generated. Register t6 is set to one
if the addition of the lower 32 bits resulted in a carry and zero otherwise.

• add t7, t3, t5: Adds the upper 32 bits of the two 64-bit numbers.

• add t1, t7, t6: Adds the carry from the lower 32-bit addition to the upper
32-bit addition.

In this program, t2 and t4 hold the lower 32 bits of the two 64-bit numbers, while t3
and t5 hold the upper 32 bits. The sltu instruction is used to detect if there is a carry
from the lower 32-bit addition. In the case of a carry, the upper 32-bit addition needs to
account for the carry by adding one to the result. The add instruction that follows the
sltu instruction adds the upper 32 bits and the next add adds the carry to the upper
32-bit addition.

Based on the overflow detection mechanism you learned in the previous exercise, you
can also implement special addition for signed 64-bit values.
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[Exercise 10] Length of a String

In multiple programming languages, strings are represented as arrays of characters
terminated by a null character. Assume that a single character is represented by eight
bits (one byte) and that the null character is represented by the value 0x00.

Your task is to write a RISC-V program that calculates the length of the string. Your
code should take the address of the first character of a string (array of characters) and
output the length of the string (excluding the null character).

Consider the following:

• The address of the first character of the string is passed in register s0.

• At the end of the program, register s1 should contain the length of the string.

Assume little-endian byte ordering. You should use only lb and sb instructions to
access the memory.
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[Solution 10] Length of a String

Below is the RISC-V assembly code:

li s1, 0 # Initialize the length counter to 0

loop:
add t0, s0, s1 # Address of next character
lb t1, 0(t0) # t1 = low byte of mem[t0]
addi s1, s1, 1 # Increment the length counter
bne t1, zero, loop # repeat loop if t1 != 0

addi s1, s1, -1 # Exclude null character from length

Want to try it out? Follow the instructions below: Open VSCode. Copy the code above
and paste it into a .s file. Add the following at the top of the file:

.data
myString:
.asciiz "Hello, World!"

.text
la s0, myString # Load address of string into s0

Run the program and open the memory view. In the Jump to menu, select data and in
Display format, select ASCII. Your screen should look like this:

Figure 87: Memory view of the string “Hello, World!”

At the end, the value of register s1 should be 13 (length of the string “Hello, World!”).
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[Exercise 11] Matrix Manipulations and Endianness

Consider the following RISC-V program, supposing that initially, i.e., at the beginning
of the execution, registers s0, s1, s2, and s3 have the following values:

• s0: The starting memory address of a two-dimensional array (a matrix), which
contains unsigned 8-bit numbers.

• s1: The number of rows in the matrix.

• s2: The number of columns in the matrix.

• s3: An arbitrary unsigned 8-bit number.

1 start:
2 add t0, zero, zero
3 add t1, zero, zero
4 add t3, zero, zero
5 add t5, s0, zero
6 loop:
7 lbu t2, 0(t5)
8 add t2, t2, s3
9 slt t4, t2, t3

10 bne t4, zero, skip
11 add s4, t0, zero
12 add s5, t1, zero
13 add t3, t2, zero
14 skip:
15 sb t2, 0(t5)
16 addi t5, t5, 1
17 addi t0, t0, 1
18 bne t0, s1, loop
19 add t0, zero, zero
20 addi t1, t1, 1
21 bne t1, s2, loop

Consider that, in the memory, the matrix is stored in column-major order, i.e., the ele-
ments of the first column are stored first, the elements of the second column are stored
next, and so on. The elements of a column are stored one after another in increasing
order of their row indices. The rows and columns of the matrix are indexed starting
from zero. Therefore, the starting memory address of the matrix (in register s0) is the
address of the element at column index zero and row index zero.
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Consider the matrix below, stored at the beginning of the .data region of memory.
The top row has the index zero, and the leftmost column also has the index zero.


12 34 56
78 113 24
35 46 57
11 122 33


a)

i) Find the values of registers s4 and s5, at the end of the program execution. You
may assume that s3 = 0.

ii) If s3 = 0, what is the value of the matrix element at row and column zero at the
end of the program?

iii) If s3 = 8, what is the value of the matrix element at row and column zero at the
end of the program?

iv) On code line 9, instruction slt is used. However, the matrix contains unsigned
8-bit numbers, and it would be intuitively appropriate to use instruction sltu instead.
In what way does the choice between slt and sltu impact this program execution?

b) Assuming no overflows or loss of information (e.g., truncation of bits of the inter-
mediate results), describe, in a nutshell, what this program does.

c) As mentioned, the matrix is stored at the beginning of the .data region in memory,
i.e., starting from the address 0x1000 0000. What are the memory contents at ad-
dresses from 0x1000 0000 to 0x1000 0008? Assume little-endian byte ordering.

d) Assembly provides a .byte directive. If used in the .data section, this directive
allows initializing memory one byte at a time. For example,

.data
array: .byte 1, 2, 5, 0, 6, 3, 20, 7

will initialize an array of eight bytes with the values [1 2 5 0 6 3 20 7].

Complete the program by adding memory initialization using the .byte directive,
and the instructions for initializing the registers s0, s1, s2, and s3. Test the program.

e) Let us now relax the previous assumption that overflows and information loss (e.g.,
data truncation) cannot occur. Answer the following questions.
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i) What is the maximum number of bits required to represent the result of the instruc-
tion add t2, t2, s3 (code line 8)?

ii) In this code, there is an instruction that truncates the result of add t2, t2, s3
and, under some circumstances, causes information loss. Find and explain it.

iii) One of the ways to handle data truncation would be to replace, when appropriate,
the result of the instruction add t2, t2, s3 with the largest value an 8-bit unsigned
number can take. Modify the program to implement the proposed solution and test it
in the RISC-V simulator.
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[Solution 11] Matrix Manipulations and Endianness

a)

i) For the given matrix and s3 = 0, the maximum value in the matrix is 122, located
in row three and column one. At the end of the execution, s4 equals three and s5
equals one.

ii) If s3 = 0, all elements of the matrix remain unchanged.

iii) If s3 = 8, all matrix elements will be incremented by eight.

iv) In the instruction slt t4, t2, t3, operand t2 is a sum of t2 and s3. Before this
addition, t2 is loaded by the instruction lbu t2, 0(t5), which loads an unsigned
byte into t2 while setting the upper 24 bits to zero. Similarly, s3 is also an unsigned
8-bit number with upper 24 bits equal to zero. The sum of t2 and s3, therefore, would
never make the MSB of t2 equal to one, keeping the sum nonnegative.

The other operand t3 of instruction slt t4, t2, t3 is also an unsigned 8-bit num-
ber with upper 24 bits equal to zero. Given that both the operands of slt are positive,
we can use slt without causing any incorrect behavior and even use sltu without
any problem.

b) The program does two things:

1. For each matrix element, it adds the value in register s3 and the matrix element
and replaces the element with the resulting sum.

2. It finds the maximum value in the matrix and saves the row index and the column
index of the maximum element to registers s4 and s5, respectively.
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A commented version of the program is given below:

start:
add t0, zero, zero # Initialize row counter (t0)
add t1, zero, zero # Initialize column counter (t1)
add t3, zero, zero # Initialize max value (t3)
add t5, s0, zero # Copy matrix address to t5

loop:
lbu t2, 0(t5) # Load element from matrix
add t2, t2, s3 # Add s3 to element
slt t4, t2, t3 # Compare element with max value
bne t4, zero, skip # Skip if element not greater

# than max
add s4, t0, zero # Store row of max element in s4
add s5, t1, zero # Store max element's column in s5
add t3, t2, zero # Update max value

skip:
sb t2, 0(t5) # Store updated element back in

# matrix
addi t5, t5, 1 # Move to next element
addi t0, t0, 1 # Increment row counter
bne t0, s1, loop # Repeat for all rows
add t0, zero, zero # Reset row counter
addi t1, t1, 1 # Increment column counter
bne t1, s2, loop # Repeat for all columns

c) The memory contents of addresses 0x1000 0000 to 0x1000 0008 will be:

Address Value

0x1000 0000 12

0x1000 0001 78

0x1000 0002 35

0x1000 0003 11

0x1000 0004 34

0x1000 0005 113

0x1000 0006 46

0x1000 0007 122

0x1000 0008 56

246 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 11
RISC-V

Exercise Book
CS-173 Fundamentals of Digital Systems

d) To initialize the memory of the simulator, we can use the .byte directive and store
the elements of the matrix byte by byte. The initialization of the memory and registers
s0, s1, s2, and s3 is shown below:

.data
matrix:

.byte 12, 78, 35, 11, 34, 113, 46, 122, 56, 24, 57, 33

.text
la s0, matrix
addi s1, zero, 4
addi s2, zero, 3
add s3, zero, zero

start:
...

e) i) The maximum number of bits needed to represent the result of adding two
unsigned 8-bit numbers is nine. The largest value of t2 and s3 is 0xFF (eight bits
unsigned). Therefore, the sum t2 + s3 requires nine bits.

ii) The instruction in question is sb t2, 0(t5) because it stores the least significant
eight bits of register t2 to memory and ignores the remaining bits. If the ignored bits
are zeros, there is no issue. However, if the bit at position nine is set (because the sum
written in t5 is too large to be represented in eight bits), the result written to memory
will be inaccurate.

iii) See the code below.

# ... original code
add t2, t2, s3 # Compute the sum

# new code, for detecting and handling overflow
srli t6, t2, 8 # get rid of all but overflow bit
beq t6, zero, continue # if the overflow bit is zero,

# continue with the original code
# otherwise

addi t2, zero, 0xFF # overwrite the sum with 0xFF
# back to the original code
continue:

slt t4, t2, t3
# ... the rest of the original code

Here is a description of the changes made to the program:

• After adding s3 and t2, the program detects if the sum can be expressed with
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eight bits by performing a logical right shift by eight bits. If the resulting number
after the logical right shift by eight bits is not zero, it indicates that the number
from the addition of s3 and t2 needed more than eight bits.

• If t2 uses only eight bits, t6 will be zero and the code will branch to the label
continue, to continue with the original program.

• Otherwise, the value in t2will be overwritten with the highest unsigned number
representable in eight bits, before the original program continues.
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[Exercise 12] Vector Comparator

Suppose that two vectors A and B, containing 16-bit signed values, are stored in
memory starting from an address contained in register s0. The values for A[i] and
B[i] are stored in the same 32-bit word in memory (see Figure 88 below). An element
of vector A occupies the 16 most significant bits of the word. An element of vector B
occupies the 16 least significant bits of the word. The end of each vector is indicated
by all zeros. You may assume that both vectors contain the same number of elements
and that no element except the last contains all zeros.

Figure 88: Memory layout for the vectors A and B.

Write a RISC-V program that compares the vectors A and B element-wise and counts
the number of elements for which A[i] > B[i]. The total count should be written in
register s1. You are allowed to access memory using only the lw instruction. Assume
little-endian byte ordering.
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[Solution 12] Vector Comparator

The RISC-V program is given below. The program compares the elements of vectors A
and B element-wise and counts the number of elements for which A[i] > B[i].

.data
AB:

.word 0x40006, 0x30001, 0x70006, 0xC000C, 0x5000C, 0x0
# A = [4, 3, 7, 12, 5, 0], B = [6, 1, 6, 12, 12, 0]

.text
la s0, AB # Load address of AB into s0

start:
add s1, zero, zero # Initialize counter to 0
add t0, zero, s0 # Copy address of AB into t0

loop:
lw t2, 0(t0) # Load A[i] and B[i] into t1
beq t2, zero, finish # Exit loop if A[i] and B[i] are 0
srai t3, t2, 16 # t3 = (Sign Ext) & A[i]
slli t2, t2, 16 # t2 = B[i] & 0x0000
srai t2, t2, 16 # t2 = (Sign Ext) & B[i]
slt t4, t2, t3 # if (t2 < t3) t4=1 else t4=0
add s1, s1, t4 # s1 = s1 + t4
addi t0, t0, 4 # Move to the next elements
j loop

finish:
nop # End of program
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[Exercise 13] Array Comparator

a) Write a program in RISC-V that compares two vectors of 32-bit signed numbers.
The program stores ’0’ in register a0 if at least a pair of elements with the same index
in both vectors differ in absolute value by more than 1000 (decimal). Otherwise, the
program stores ’1’ in register a0.

You can assume that when the program starts, register a0 contains the address of the
first vector in memory, while register a1 contains the address of the second vector and
register a2 contains the number of elements in each vector.

Note: to find the absolute value of the difference between two numbers, subtract the
smaller from the greater.

b) Briefly discuss when can an overflow occur in your program.
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[Solution 13] Array Comparator

a) The code of the solution is given below:

prog:
li t5, 1 # initialize return value to 1
li t6, 1000 # set threshold to 1000

loop:
beq a2, zero, finish# if counter reach zero, go to finish
lw t2, 0(a0) # load element from vector1
lw t3, 0(a1) # load element from vector2
slt t4, t3, t2 # if(t3<t2) t4=1
bne t4, zero, next # if(t4=1) goto next
sub t3, t3, t2 # t3 = t3 - t2
j next2

next:
sub t3, t2, t3 # t3 = t2 - t3

next2:
slt t4, t6, t3 # if(abs difference>threshold) t4=1
bne t4, zero, err # if(t4!=0) goto err
addi a0, a0, 4 # move to next element in vector1
addi a1, a1, 4 # move to next element in vector2
addi a2, a2, -1 # decrement loop counter
j loop

err:
add t5, zero, zero # set return value to 0

finish:
mv a0, t5 # move return value to a0
nop

b) An overflow can occur when a negative value is subtracted from a positive one and
the difference is greater than the maximal positive value.

Example: 0000 0000 - 8000 0000; 7FFF FFFF - FFFF FFFF;
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[Exercise 14] Understanding RISC-V Assembly Code

Consider the following RISC-V program:

add t0, a0, zero
add t1, a1, zero
add t2, a2, a2
add t2, t2, t2
add t3, t0, t2

loop:
lw t4, 0(t0)
sw t4, 0(t1)
addi t0, t0, 4
addi t1, t1, 4
sltu t5, t0, t3
bne t5, zero, loop

Assume that initially registers a0 and a1 store addresses in memory and register a2
stores an integer N. Registers t0 to t5 are used to store temporary values and zero is
a register that always has the value zero.

a) Briefly comment each line of the code.

b) Describe in one sentence what this program does (its purpose).

c) Why did the instruction addi add 4 to registers t0 and t1?

d) Why is the instruction sltu (set less than unsigned) used instead of the instruction
slt?
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[Solution 14] Understanding RISC-V (I)

a) Commented code:

add t0, a0, zero # t0 <- a0
add t1, a1, zero # t1 <- a1
add t2, a2, a2 # t2 <- 2*a2
add t2, t2, t2 # t2 <- 4*a2
add t3, t0, t2 # t3 <- a0 + 4*a2

loop:
lw t4, 0(t0) # load word from t0
sw t4, 0(t1) # store word to t1

# (copy word from t0 to t1)
addi t0, t0, 4 # t0 <- t0+4

# (points on the next word)
addi t1, t1, 4 # t1 <- t1+4

# (points on the next word)
sltu t5, t0, t3 # if (t0 < t3)

# t5 <- 1 else t5 <- 0

bne t5, zero, loop # if (t5 != 0) go to loop

b) This RISC-V program copies the contents of the memory area that ranges from ad-
dress a0 to address a0+4N, to the memory area ranging from a1 to a1+4N.

c) t0 and t1 hold the addresses of the source and destination memory areas, respect-
ively. These registers are referred to as pointers because their values point to memory
addresses. Each word in memory is 32 bits (4 bytes) and must be aligned to an ad-
dress that is a multiple of 4. The lw and sw instructions operate on 32-bit words. To
access the next word in memory, the current address must be incremented by 4. This
is achieved using the instructions addi t0, t0, 4 and addi t1, t1, 4, which
update pointers to refer to the subsequent word in the memory.

d) The instruction sltu t5, t0, t3 compares the values of registers t0 and t3,
both of which are pointers. The system’s address space ranges from 0x0000’0000 to
0xFFFF’FFFF, meaning that pointers are always unsigned, as they refer to memory
addresses. Therefore, the comparison between pointers is performed using the sltu
instruction, which operates on unsigned values.
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[Exercise 15] Understanding RISC-V

Consider the following RISC-V program:

begin:
add t0, a0, zero
add t1, a1, zero
add t2, a2, zero
add t3, zero, zero
add t4, zero, zero

outer:
lbu t5, 0(t0)
bne t3, a3, cont

inner:
lbu t6, 0(t1)
sb t6, 0(t2)
addi t1, t1, 1
addi t2, t2, 1
addi t4, t4, 1
bne t6, zero, inner
addi t2, t2, -1
addi t4, t4, -1

cont:
sb t5, 0(t2)
addi t0, t0, 1
addi t2, t2, 1
addi t3, t3, 1
bne t5, zero, outer
addi t3, t3, -1
add a4, t3, t4

fin:
nop

a) Describe in a sentence what this program does, knowing that when the program
starts, registers a0, a1, a2 and a3 contain initial values, and at the end of execution
the result is stored in a4. Registers a0 and a1 contain each the memory address of a
string that ends with the NULL character, i.e. a zero byte (0000’0000).

b) Modify the program such that the lbu instruction is replaced by lwwithout altering
the functionality (behaviour). String addresses (i.e. beginning of the string) are always
multiples of four and the processor is little-endian. The sb instruction is available.

c) Should the program in the preceding point be modified if the processor were big-
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endian? If so, briefly describe the necessary modifications.
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[Solution 15] Understanding RISC-V

a) The commented code:

begin:
add t0, a0, zero # move address of 1st string to t0
add t1, a1, zero # move address of 2nd string to t1
add t2, a2, zero # move address of result string to t2
add t3, zero, zero # initialize t3(index of 1st string)
add t4, zero, zero # initialize t4(index of 2nd string)

outer:
lbu t5, 0(t0) # load one character from 1st string
bne t3, a3, cont # if index != a3, go to cont

inner:
lbu t6, 0(t1) # load one character from 2nd string
sb t6, 0(t2) # store character in result string
addi t1, t1, 1 # increment address of 2nd string
addi t2, t2, 1 # increment address of result string
addi t4, t4, 1 # increment index of 2nd string
bne t6, zero, inner # if character != 0, go to inner
# the following two instructions are necessary to avoid
# counting the NULL character of the 2nd string
# in the length of the result string
addi t2, t2, -1 # decrement address of result string
addi t4, t4, -1 # decrement index of 2nd string

cont:
sb t5, 0(t2) # store character in result string
addi t0, t0, 1 # increment address of 1st string
addi t2, t2, 1 # increment address of result string
addi t3, t3, 1 # increment index of 1st string
bne t5, zero, outer# if character != 0, go to outer
addi t3, t3, -1 # decrement index of 1st string
add a4, t3, t4 # compute and return length of result string

fin:
nop

At the end of execution, register a4 contains the length of a newly constructed string,
and register a0 contains the memory address of this new string. This new string is
created by taking the string pointed to by the initial value in a0 and inserting the
string pointed by the initial value in a1 at the position specified by the initial value in
a3, as shown in the figure below:
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b) The following program does not use the lbu instruction. Instead, it uses the lw
instruction keeping in mind that the processor is little-endian.

begin:
add t0, zero, a0 # move address of 1st string to t0
add t1, zero, a1 # move address of 2nd string to t1
add t2, zero, a2 # move address of result string to t2
add t3, zero, zero # initialize t3(index of 1st string)
add t4, zero, zero # initialize t4(index of 2nd string)

outer:
andi s0, t3, 0x3 # Check if index is a multiple of 4
bne s0, zero, no_ld1 # if not, skip load
lw t5, 0(t0) # load one word from 1st string
addi t0, t0, 4 # increment address of 1st string

no_ld1:
andi s0, t5, 0xff # *** Get byte
srli t5, t5, 8 # *** Prepare next byte
bne t3, a3, cont # if index != a3, go to cont

inner:
andi s1, t4, 0x3 # Check if index is a multiple of 4
bne s1, zero, no_ld2 # if not, skip load
lw t6, 0(t1) # load one word from 2nd string
addi t1, t1, 4 # increment address of 2nd string

no_ld2:
andi s1, t6, 0xff # +++ Get byte
srli t6, t6, 8 # +++ Prepare next byte
sb s1, 0(t2) # store character in result string
addi t2, t2, 1 # increment address of result string
addi t4, t4, 1 # increment index of 2nd string
bne s1, zero, inner # if character != 0, go to inner
addi t2, t2, -1 # decrement address of result string
addi t4, t4, -1 # decrement index of 2nd string

cont:
sb s0, 0(t2) # store character in result string
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addi t2, t2, 1 # increment address of result string
addi t3, t3, 1 # increment index of 1st string
bne s0, zero, outer # if character != 0, go to outer
addi t3, t3, -1 # decrement index of 1st string
add a4, t3, t4 # compute and return length of result string

fin:
nop

c) Yes. Instead of the sequence of instructions andi and srli (marked by *** and
+++) the following instruction sequence might be used instead (alternate solutions are
possible):

srl s0, t5, 24 # prepare byte
andi s0, s0, 0xff # get byte
sll t5, t5, 8 # prepare next

...
srl s1, t6, 24 # prepare byte
andi s1, s1, 0xff # get byte
sll t6, t6, 8 # prepare for next
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[Exercise 16] Vector Difference

Consider a vector C such that C[i] = |A[i]−B[i]| for all valid indices i. Each element of
C is the absolute difference between the corresponding elements of vectors A and B.
The vectors are stored in memory as 32-bit signed integers.

We want to write a RISC-V program to create vector C from vectors A and B. In the
beginning, registers a0, a1, and a2 point to the starting address of vectors A, B, and C,
respectively. Moreover, register a3 indicates the number of elements in these vectors.

a) Write the program described above, ignoring any possible overflows. The program
should not use any subtraction or arithmetic negation instructions, but it can use lo-
gical operations and addition like xor.

b) Discuss the possible overflow cases. Which instructions in your program could
potentially generate an overflow? Briefly describe (without necessarily modifying the
program) how to detect such overflows.
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[Solution 16] Vector Difference

a) Because neither arithmetic negation nor subtraction are available, bitwise negation
and addition must be used instead to implement the requested program.

begin:
add t0, zero, a0 # t0 <- a0
add t1, zero, a1 # t1 <- a1
add t2, zero, a2 # t2 <- a2
add t3, zero, a3 # t3 <- a3

loop:
beq t3, zero, fin # if t3 = 0 then goto finish
lw t4, 0(t0) # t4 <- mem[t0]
lw t5, 0(t1) # t5 <- mem[t1]
not t5, t5 # t5 <- not t5
addi t5, t5, 1 # t5 <- t5 + 1 (***)
add t5, t4, t5 # t5 <- t4 + t5 (+++)
slt t4, t5, zero # check the sign
beq t4, zero, skip # if positive goto skip
not t5, t5 # t5 <- not t5
addi t5, t5, 1 # t5 <- t5 + 1 (***)

skip:
sw t5, 0(t2) # mem[t2] <- t5
addi t0, t0, 4 # t0 <- t0 + 4
addi t1, t1, 4 # t1 <- t1 + 4
addi t2, t2, 4 # t2 <- t2 + 4
addi t3, t3, -1 # t3 <- t3 - 1
j loop

fin:
nop

b) The instructions marked by *** and +++ could potentially cause an overflow. We
already showed how an overflow can be detected in assignment Checking for Overflows.
Please check it for more details.

Note that the *** case is a specific case that can have a simpler custom overflow de-
tection mechanism. In this case, an overflow occurs if register t5 contains the smallest
negative number (’1’ at the MSB followed by ’0’s) before the not instruction is per-
formed. Thus, we can detect a potential overflow by comparing t5’s value against the
smallest negative number.
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[Exercise 17] Understanding RISC-V

Study the following RISC-V program:

begin:
mv t0, a0
mv t1, a1
mv t2, zero
addi a0, zero, -1

cont:
lbu t4, 0(t1)

outer:
lbu t3, 0(t0)
beq t3, zero, fin
bne t3, t4, skip
mv a0, t2
mv t5, t0

inner:
addi t0, t0, 1
addi t1, t1, 1
lbu t3, 0(t0)
lbu t4, 0(t1)
beq t4, zero, fin
beq t3, zero, fail
beq t3, t4, inner
addi t0, t5, 1
mv t1, a1
addi a0, zero, -1
j cont

skip:
addi t0, t0, 1
addi t2, t2, 1
j outer

fail:
addi a0, zero, -1

fin:
nop

a) Describe in a sentence what this program does, knowing that when the program
starts, registers a0 and a1 each contain the memory address of a string ending with a
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NULL character, i.e. a zero byte. At the end of execution, the result is stored in register
a0.

b) Explain in a few words what the content of t5 represents and the situation in which
this value is needed.

c) Suppose that the lbu instruction is not available, but instead lw is used to read the
memory. Write a code snippet that provides the same functionality as the instruction
lbu a1, 0(a0), knowing that a0 contains the memory address of the byte to be
loaded, and a1 is the register where this byte must be stored at the end of the execution.
Consider a big-endian processor. Recall that the lbu instruction does not perform a
sign extension. Make sure that the addresses that are passed to lw are always aligned,
i.e. multiples of 4.
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[Solution 17] Understanding RISC-V

a) At the end of execution, register a0 contains the position (index) of the first appear-
ance of a substring in the input string. The initial value in a1 points on the substring
and the initial value in a0 points on the input string. If the substring is not found, the
negative position is stored (-1).

begin:
mv t0, a0 # t0 <- a0
mv t1, a1 # t1 <- a1
mv t2, zero # t2 <- 0
addi a0, zero, -1 # a0 <- -1

cont:
lbu t4, 0(t1) # t4 <- mem[t1]

outer:
lbu t3, 0(t0) # t3 <- mem[t0]
beq t3, zero, fin # if t3 = 0 goto fin
bne t3, t4, skip # if t3 <> t4 goto skip
mv a0, t2 # remember index
mv t5, t0 # wrong guess backup

inner:
addi t0, t0, 1 # t0 <- t0 + 1
addi t1, t1, 1 # t1 <- t1 + 1
lbu t3, 0(t0) # t3 <- mem[t0]
lbu t4, 0(t1) # t4 <- mem[t1]
beq t4, zero, fin # return found
beq t3, zero, fail # if t3 = 0 fail
beq t3, t4, inner # continue inner loop
addi t0, t5, 1 # recover wrong guess
mv t1, a1 # recover
j cont # goto continue
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skip:
addi t0, t0, 1 # t0 <- t0 + 1
addi t2, t2, 1 # t2 <- t2 + 1
j outer # goto outer

fail:
addi a0, zero, -1 # a0 <- -1

fin:
nop

b) Register t5 enables recovery from a “wrong guess”. It holds the address where the
matching started. If it does not succeed (the substring is not found), the matching is
restarted from the next potential match at the address t5 + 1.

c) The following code provides the functionality of the lbu instruction. Two possible
solutions are presented. Both of them assume a big-endian processor.

xlbu:
li t1, 0xfffffffc # t1 <- 0xfffffffc
and t0, a0, t1 # t1 <- a0 & t1 (align)
li t1, 0xff000000 # t1 <- 0xff000000
andi t2, a0, 0x3 # t2 <- a0 & 0x3 (get offset)
lw t3, 0(t0) # t3 <- mem[t0]

loop:
beq t2, zero, done # if t2 = 0 done
slli t3, t3, 8 # t3 <- t3 << 8 (next byte)
addi t2, t2, -1 # t2 <- t2 - 1
j loop # goto loop

done:
and t3, t3, t1 # t3 <- t3 & 0xff000000
srli a1, t3, 24 # a1 <- t3 >> 24
nop

Another possible solution that uses srli:

xlbu:
li t1, 0xfffffffc # t1 <- 0xfffffffc
and t0, a0, t1 # t1 <- a0 & t1 (align)
andi t2, a0, 0x3 # t2 <- a0 & 0x3 (get offset)
lw t3, 0(t0) # t3 <- mem[t0]
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loop:
sltiu t1, t2, 3 # check t2 < 3
beq t1, zero, done # if t2 = 3 done
srli t3, t3, 8 # t3 <- t3 >> 8 (next byte)
addi t2, t2, 1 # t2 <- t2 + 1
j loop # goto loop

done:
andi a1, t3, 0xff # a1 <- t3 & 0xff (get byte)
nop
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[Exercise 18] Binary Coded Decimal

Write a RISC-V program that converts from the BCD (Binary Coded Decimal) repres-
entation to the ordinary binary representation. In BCD representation, numbers are
encoded directly from their decimal representation and each decimal digit is represen-
ted in binary using 4 bits. For example, the value 1992 in decimal is encoded in BCD
using 16 bits as 0001'1001'1001'0010, while its ordinary binary representation is
0000'0111'1100'1000. Certain binary values such as 1111'1010'1100'1110
cannot represent BCD values; this happens whenever a group of 4 bits represents a
value greater than 9.

The unsigned 32-bit value to be converted is located in register a0 and the binary
result at the end of the conversion must be saved in register a0. If the value contained
in register a0 cannot represent a BCD value, the a0 register must contain -1 at the end
of the execution.

a) Write the conversion function ignoring any possible overflows. You can assume the
availability of multiplication instructions on 32-bit operands:

mul rd, rs, rt # rd = rs * rt
muli rd, rs, imm # rd = rs * imm

b) The mul and muli instructions do not exist in RISC-V. Modify the program such
that it no longer makes use of these multiplication instructions.

c) Discuss the possible overflow cases. Modify the program, if necessary, to remedy
the situation.
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[Solution 18] Binary Coded Decimal

a) Note that the conversion can be decomposed into a series of multiplications by 10
followed by an addition. For example, a 4-digit BCD number like abcd10 can be repres-
ented as:

abcd10 = a ∗ 103 + b ∗ 102 + c ∗ 101 + d ∗ 100 = ((a ∗ 10 + b) ∗ 10 + c) ∗ 10 + d

The 32-bit value in register a0 has eight 4-bit parts each representing a decimal digit.
We use the following code to extract the value of each part and obtain the binary value
using the conversion mechanism shown above.

1 begin:
2 add t0, a0, zero # t0 <- a0
3 add t6, zero, zero # t6 <- 0
4 beq t0, zero, fin # terminate if input is zero
5 addi t1, zero, 8 # t1 <- 8 (number of digits)
6 loop:
7 srli t2, t0, 28 # t2 <- the current leftmost digit
8 sltiu t3, t2, 10 # check if t2 < 10
9 bne t3, zero, skip # skip if the digit is valid

10 addi t6, zero, -1 # t6 <- -1, error
11 j fin # finish
12 skip:
13 muli t6, t6, 10 # t6 <- t6 * 10
14 add t6, t6, t2 # t6 <- t6 + t2
15 slli t0, t0, 4 # bring the next digit to bits 31-28
16 addi t1, t1, -1 # t1 <- t1 - 1, decrement the counter
17 bne t1, zero, loop # loop until t1 becomes zero
18 fin:
19 addi a0, t6, 0 # a0 <- t6, bring the result to a0
20 nop

b) Multiplication by 10 can be replaced by shifting and adding. The idea is X * 10 = X*8
+ X*2 as shown in the following RISC-V code:

1 ...
2 skip:
3 slli t3, t6, 3 # mul t6 by 8
4 slli t4, t6, 1 # mul t6 by 2
5 add t6, t3, t4 # t6 <- 10 * t6
6 ...
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c) It is not possible to have an overflow because the largest number in eight digit BCD
representation with 32 bits is smaller than the largest 32-bit unsigned number (or even
the largest number in two’s complement representation).
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[Exercise 19] Understanding RISC-V

Consider the following RISC-V program.

1 start:
2 addi t1, a1, -1
3 outer:
4 beq t1, zero, fin
5 add t0, a0, zero
6 add t2, t1, zero
7 inner:
8 beq t2, zero, cont
9 lw t3, 0(t0)

10 lw t4, 4(t0)
11 sltu t5, t4, t3
12 beq t5, zero, skip
13 sw t3, 4(t0)
14 sw t4, 0(t0)
15 skip:
16 addi t0, t0, 4
17 addi t2, t2, -1
18 j inner
19
20 cont:
21 addi t1, t1, -1
22 j outer
23 fin:
24 nop

a) Describe in a sentence what the program does, knowing that when the program
starts, registers a0 and a1 contain the address of an array in memory and the number
of its elements, respectively.

b) Explain in a few words the purpose of the two lw and the two sw instructions in
this context.

c) What is the type of the processed values ? Justify your answer.

d) Explain in a few words what the contents of the three registers t0, t1 and t2 rep-
resent. Modify the program in order to correctly handle the case where a1 = 0.

e) The original program does not indicate any result at the end of execution. We want
the program to store the following values in register a0:
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• 0 in the case where no data in the memory has been changed.

• -1 in the case where some data has been changed in the memory.

Modify the program such that it stores the correct result in a0 at the end of execution.

Version 1.0 of 26th May 2025, EPFL ©2025 271 of 304



Exercise Book
CS-173 Fundamentals of Digital Systems

Solution 19
RISC-V

[Solution 19] Understanding RISC-V

a) This program sorts the elements of a vector in an ascending order.

b) The two lw and two sw instructions are used to swap the locations of two elements
in memory.

c) The program processes unsigned integers as the comparison is done using the sltu
(set less than unsigned) instruction.

d) Register t0 is used as a pointer on the elements of the vector. Registers t1 and t2
are used as counters to control the two loops. t1 contains the remaining iterations of
the inner loop, in other words, the number of iterations of the outer loop. Register
t2 contains the total number of iterations of the inner loop.

When the initial value of a1 is 0, the program will not behave correctly (there is a risk
of having the program generate wrong addresses). The following case should thus be
avoided:

1 start:
2 beq a1, zero, fin
3 addi t1, a1, -1
4 ...

e) We present here possible changes.

1 start:
2 addi t6, zero, 0 # t6 <- 0
3 addi t1, a1, -1
4
5 outer:
6 beq t1, zero, fin
7
8 ... # no changes
9

10 sw t3, 4(t0)
11 sw t4, 0(t0)
12 addi t6, zero, -1 # t6 <- -1
13
14 skip:
15 addi t0, t0, 4
16 addi t2, t2, -1
17 j inner
18
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19 cont:
20 addi t1, t1, -1
21 j outer
22
23 fin:
24 mv a0, t6 # a0 <- t6
25 nop
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[Exercise 20] Understanding RISC-V

Analyze the following RISC-V program:

1 program:
2 slli t0, a1, 2
3 add t0, a0, t0
4 addi t0, t0, -4
5 loop:
6 slt t1, a0, t0
7 beq t1, zero, fin
8 lw t2, 0(a0)
9 lw t3, 0(t0)

10 sw t2, 0(t0)
11 sw t3, 0(a0)
12 addi t0, t0, -4
13 addi a0, a0, 4
14 j loop
15
16 fin:
17 nop

When the program starts, a0 contains the memory address of a vector of 32-bit num-
bers and a1 contains an integer.

a) Describe in a sentence what the program does.

b) Must the numbers contained in the vector be either signed or unsigned? Or is it
possible to have both signed and unsigned numbers in the vector ? Briefly explain
your answer.

c) We would like to change this program so that it can process (handle) bytes. To this
effect we need another program that, given four bytes in a0, stores the same four bytes
in the reverse order in a0: byte B3 (bits 32-24) is swapped with byte B0 and B2 with B1.
Write such a program respecting ordinary RISC-V conventions.
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[Solution 20] Understanding RISC-V

a) This program inverts the order of elements in a vector in memory.

a0 points (starting from the beginning) on the vector’s element that must be
swapped next.

t0 points (starting from the end) on the vector’s (other) element that must be
swapped with the first.

1 program:
2 slli t0, a1, 2 # t0 = Nb elements * sizeof(elem)
3 add t0, a0, t0 # t0 points to the end of the vector
4 addi t0, t0, -4 # t0 points to the last element
5 loop:
6 slt t1, a0, t0
7 beq t1, zero, end # if( a0 >= t0) go to end
8 lw t2, 0(a0) # Store in t2 mem(a0)
9 lw t3, 0(t0) # Store in t3 mem(t0)

10 sw t2, 0(t0) # Copy t2 to mem(t0)
11 sw t3, 0(a0) # Copy t3 to mem(a0)
12 addi t0, t0, -4 # Update the end pointer
13 addi a0, a0, 4 # Update the start pointer
14 j loop # Continue the loop
15
16 end:
17 nop

b) The RISC-V program does not modify any of the vector’s elements in a way that
depends on their numerical value or interpretation; it only moves them in memory.
There is thus no restriction on their type, they can be signed, unsigned or in any other
representation.

c) The following code inverts the order of the bytes of a 32-bit input.

1 Inv_byte:
2 li t2, 0 # t2 will store the result
3 addi t0, zero, 0xFF # Mask byte 7-0 in t0
4 and t1, a0, t0 # Byte 7-0 in t1
5 slli t1, t1, 24 # Shift byte 7-0 to position 31-24
6 add t2, zero, t1 # Byte 31-24 of the result is ready
7
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8 slli t0, t0, 8 # Mask byte 15-8 in t0
9 and t1, a0, t0 # Byte 15-8 in t1

10 slli t1, t1, 8 # Shift byte 15-8 to position 23-16
11 or t2, t2, t1 # Byte 23-16 of the result is ready
12
13 slli t0, t0, 8 # Mask byte 23-16 in t0
14 and t1, a0, t0 # Byte 23-16 in t1
15 srli t1, t1, 8 # Shift byte 23-16 to position 15-8
16 or t2, t2, t1 # Byte 15-8 of the result is ready
17
18 slli t0, t0, 8 # Mask byte 31-24 in t0
19 and t1, a0, t0 # Byte 31-24 in t1
20 srli t1, t1, 24 # Shift byte 31-24 to position 7-0
21 or t2, t2, t1 # Byte 7-0 of the result is ready
22
23 fin:
24 mv a0, t2
25 nop
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[Exercise 21] CORDIC

The CORDIC algorithm (COordinate Rotation DIgital Computer) allows calculating
the length of a vector V(X,Y) using the following iterative relationships:

xi+1 = xi − di · yi · 2−i (1)

yi+1 = yi + di · xi · 2−i (2)

zi+1 = zi − di · tan−1(2−i) (3)

Where di =

{
−1 if yi > 0
1 otherwise

x, y, and z are initialized as follows: x0 = X , y0 = Y , and z0 = 0.

After n iterations (n large enough), xn, yn, and zn can be expressed as follows:

xn ≈ An ·
√
X2 + Y 2 (4)

yn ≈ 0 (5)

zn ≈ tan−1

(
Y

X

)
(6)

If we neglect constant An, these iterative formulas allow calculating the length of a
vector as well as its angle with the x axis.

a) Suppose that initially x0 = −24, y0 = 32, and z0 = 0. Calculate by hand the value of
x2 and y2. Do not calculate z2.

b) Using the aforementioned iterative formulas, write a RISC-V program that com-
putes in 31 iterations the length and angle (with the x axis) of a vector whose initial x
and y coordinates are available in registers a0 and a1. These values are 32-bit signed
integer values encoded in two’s complement. Register a2 contains the memory ad-
dress of an array of 32-bit words which contains the already computed tan−1(2−i) coef-
ficients (you do not need to compute them). Element 0 in the array is the coefficient
of iteration 0, element 1 in the array is the coefficient of iteration 1 and so on. Ignore
possible overflows. At the end of execution, the length and angle should be stored in
a0 and a1 respectively.
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[Solution 21] CORDIC

a) We can find x2 and y2 using the iterative formulas. Initially, we have:

x0 = −24

y0 = 32

z0 = 0

Iteration 1 will be:

y0 > 0 ⇒ d0 = −1

x1 = −24− (−1) · 32 · 20 = −24 + 32 = 8

y1 = 32 + (−1) · (−24) · 20 = 32 + 24 = 56

Then, iteration 2:

y1 > 0 ⇒ d1 = −1

x2 = 8− (−1) · 56 · 2−1 = 8 + 28 = 36

y2 = 56 + (−1) · 8 · 2−1 = 56− 4 = 52

b) The RISC-V program that calculates the length and angle of a vector using the
CORDIC formulas is given below:

1 cordic:
2 add t0, zero, a0 # t0 <- x0
3 add t1, zero, a1 # t1 <- y0
4 add t2, zero, zero # t2 <- z0 (init to 0)
5 add t3, zero, a2 # t3 <- a2 (coef table)
6 addi t4, zero, 1 # t4 <- 1 (index)
7 loop:
8 sltiu t5, t4, 32 # if t4 = 32
9 beq t5, zero, end # then goto end

10 slt t5, zero, t1 # if 0 < yi , t5=1 else t5=0
11 beq t5, zero, dpos # then go to dpos, else
12 dneg:
13 sra t5, t1, t4 # t5 <- yi*2**(-i)
14 sra t6, t0, t4 # t6 <- xi*2**(-i)
15 add t0, t0, t5 # compute next xi
16 sub t1, t1, t6 # compute next yi
17 lw t5, 0(t3) # t5 <- coeff[i]
18 add t2, t2, t5 # compute next zi
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19 j cont # goto cont
20 dpos:
21 sra t5, t1, t4 # t5 <- yi*2**(-i)
22 sra t6, t0, t4 # t6 <- xi*2**(-i)
23 sub t0, t0, t5 # compute next xi
24 add t1, t1, t6 # compute next yi
25 lw t5, 0(t3) # t5 <- coeff[i]
26 sub t2, t2, t5 # compute next zi
27 cont:
28 addi t3, t3, 4 # t3 <- next coeff addr
29 addi t4, t4, 1 # t4 <- next index
30 j loop # goto loop
31 end:
32 add a0, zero, t0 # a0 <- xn
33 add a1, zero, t2 # a1 <- zn
34 nop
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[Exercise 22] Division Rest

We want to write a program that calculates the rest of an integer division of a 32-
bit unsigned integer by 15 without performing the division per se. We can use the
following property: the remainder of the division of a number by 15 is equal to the
sum of the digits of its hexadecimal representation, repeatedly calculated until a single
hexadecimal digit is obtained.

Thus, you will start by summing all the digits (in hexadecimal representation) of the
given number. If the hexadecimal representation of this sum has more than one digit,
you will apply the same procedure again to the result: sum the digits of the sum.
You will repeat this process until you obtain a value that is represented by a single
hexadecimal digit. This value is the rest of the integer division by 15, except if this
final single-digit value is equal to 15 (which is represented as ‘0xF‘ in hexadecimal and
corresponds to the decimal value 15), in which case the rest is 0 (and not 15).

For example, let N = 0x32041EF2 = 839130866. We calculate the rest of its division by
15 as follows:

• We first sum the 8 digits of the hexadecimal representation of N
3 + 2 + 0 + 4 + 1 + E + F + 2 = 0x29 (41)

• Since the obtained sum 0x29 has two digits, we compute the sum of its digits
2 + 9 = 0xB (11)
which has only one digit

This value 0xB is the result of the integer division of N by 15, as it has only one digit
and is different from 15 (no need to replace it with 0). It can easily be verified that
839′130′866 = 55′942′057 · 15 + 11.

a) Write a program that calculates and stores in a0 the rest of the division of a 32-bit
number N by 15 at the end of execution. The initial value of N is supplied through the
a0 register. The value of this register does not necessarily need to be preserved during
the program’s execution. Implement the iterative process described above to arrive at
the single-digit hexadecimal sum.
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[Solution 22] Division Rest

a) We make the following choices to calculate the rest of the division by 15:

• To isolate the 4 bits necessary to compute the partial sums we successively use
the sll and srl instructions. Alternately we could also use a mask.

• To repeatedly process the sum of digits until a single hexadecimal digit is ob-
tained, we use the “jump” instruction (j) to return to the summation logic if the
result is still greater than a single hexadecimal digit.

A possible solution is given below:

1 start:
2 addi t0, zero, 28
3 addi t1, zero, 28
4 add t2, zero, zero # intermediary sum
5 addi t3, zero, 8 # 32-bit hex digits
6 sum:
7 beq t3, zero, rec # end partial sums test
8 sll t4, a0, t0
9 srl t4, t4, t1

10 add t2, t2, t4 # partial sum
11 addi t0, t0, -4 # shift left value
12 addi t3, t3, -1 # loop counter update
13 j sum
14 rec:
15 add t5, t2, zero
16 li t6, 0xFFF0
17 and t5, t5, t6
18 beq t5, zero, fin # check if sum is single hex digit
19 add a0, t2, zero # update a0 with the sum for next iteration
20 j start # jump back to the beginning for the next summation round
21 fin:
22 addi t0, zero, 15 # Edge case - check if final result is 15
23 bne t2, t0, skip
24 addi t2, zero, 0
25 skip:
26 add a0, zero, t2
27 nop
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[Exercise 23] Run-Length Encoding

Write a RISC-V program that performs Run-Length Encoding. This encoding is effi-
cient for representing a string containing characters that are often repeated consecut-
ively. Each character, repeated or not, is represented using two bytes, the first being the
character itself, and the second the number of times this character is repeated consec-
utively. For example, the string ’aaaabccc’ will be encoded into the RLE sequence
’a’, 4, ’b’, 1, ’c’, 3.

Some specifications of the RISC-V program that performs the RLE encoding are given
below:

• Characters are in ASCII format (an unsigned byte whose value ranges from 0 to
127).

• When the program starts, register a0 contains the memory address of a string
that ends with a null character, i.e., the last byte of the string is zero.

• The result of the program is a list of bytes representing the encoded string. The
memory address where the program must write the encoded string is given in
register a1. The encoded list of bytes also ends with a null byte.

Figure 89 below shows the input string and the output encoded list of bytes:

'a'Input list

Output list

'a' 'b' 'c' 'c' 'c' 0

'a' 2 'b' 1 'c' 3 0

Figure 89: Example of RLE encoding

a) Write a RISC-V program that performs RLE encoding. Assume that a character is
never repeated consecutively more than 255 times.

b) Give a simple way of modifying the encoding in the event of a character being
repeated more than 255 times. Modify the code of the program accordingly.

c) Modify the code to implement a more efficient encoding as follows:

• If a character has a single occurrence and is not repeated, the ’1’ is omitted.
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• If a character is repeated (consecutive occurrences), the encoding is essentially
the same as before. However, in order to determine whether an element (byte)
represents a character or a number of repetitions, the most significant bit (MSB)
is set to ’1’ in the latter case (i.e., 128 is added to the value representing the
number of repetitions).

The example string ’aaaabccc’ is now encoded into the sequence ’a’, 132 (4 + 128),
’b’, ’c’, 131. Note that since the MSB is now used to distinguish between characters
and repetitions, the maximum number of repetitions that can be handled is now 127
instead of 255 (we lose the MSB).
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[Solution 23] Run-Length Encoding

a) The code of the RISC-V program that performs RLE encoding is given below with
appropriate comments. t0 contains the last read character, t1 contains the repeated
character, and t2 the number of repetitions.

1 rle: lbu t0, 0(a0) # Initialisations
2 beq t0, zero, fin
3 add t1, zero, t0
4 add t2, zero, zero
5
6 loop: bne t0, t1, diff # Check if char is different
7 addi t2, t2, 1 # If similar, increment counter
8 j meme
9

10 # Write the repeated char and the number of repetitions
11 # on the output list. Update the pointer of the output list
12 diff: sb t1, 0(a1)
13 sb t2, 1(a1)
14 addi a1, a1, 2
15
16 # If the input list is completed, terminate the program
17 beq t0, zero, fin
18
19 # Update the repeated char and the number of repetitions
20 add t1, t0, zero
21 addi t2, zero, 1
22
23 meme: addi a0, a0, 1 # Go to next char
24 lbu t0, 0(a0) # Read the next char
25 j loop
26
27 fin: sb zero, 0(a1) # Ends the output list with 0
28 nop

b) The simplest way of modifying the code is to interpret a character that is repeated
more than 255 times as a new character. For example, if a character repeats 256 times,
it will be encoded as ’a’, 255, ’a’, 1. This only requires adding a simple control
sequence after the loop label to implement the desired new functionality. The modi-
fication is thus:

1 loop: bne t0, t1, diff
2 addi t3, zero, 255 # Verify the 255 limit
3 beq t2, t3, diff # If the limit is reached
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4 # consider the next repeated
5 # char as different
6
7 addi t2,t2,1
8 j meme

Note that in order to increase the performance of the code, we can move instruction
addi t3, zero, 255 within the initialization part of the program.

c) We only need to slightly modify the part that writes the encoded sequence: i.e., the
first two lines after the diff label. If there are no repetitions, we simply increment the
pointer on the output (encoded) sequence of bytes and continue, otherwise we add 128
to the number of repetitions and write it to the encoded string.

The modified code is given below.

1 diff:
2 sb t1, 0(a1)
3 addi t4, zero, 1
4 beq t2, t4, ignore # Repeated char ?
5 addi t2, t2, 128 # yes, add 128
6 sb t2, 1(a1) # write on the output encoded string
7 addi a1, a1, 1 # increment pointer
8
9 ignore:

10 addi a1, a1, 1 # increment pointer
11 beq t0, zero, fin
12 ...
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[Exercise 24] srli or srai, that is the question!

Consider the following RISC-V program:

1 start:
2 slli t0, a0, 16
3 srli t0, t0, 16
4 slli t1, a1, 16
5 srli t1, t1, 16
6 add a0, zero, zero
7 loop:
8 beq t1, zero, end
9 andi t2, t1, 1

10 beq t2, zero, cont
11 add a0, a0, t0
12 cont:
13 slli t0, t0, 1
14 srli t1, t1, 1
15 j loop
16 end:
17 nop

When the program starts, two initial values are present in registers a0 and a1. At the
end of execution, the result is stored in register a0.

a) Describe briefly what the program does.

b) What is the maximum effective size (in bits) of the initial values in a0 and a1, and
the final value in a0? Is there an overflow risk in the program’s execution? Explain.

c) Are the initial values in a0 and a1 treated as signed or unsigned numbers by the
program? Explain.

d) If we replaced only the first srli instruction by srai, would this program still
perform a useful but different action? If so, describe the new action and the result. If
not, precisely explain why modifying the program in this manner makes no sense.

e) What if we replaced both the first and second srli instructions by srai?

f) What if we replaced all three srli instructions by srai?
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[Solution 24] srli or srai, that is the question!

a) The program performs the multiplication of two 16-bit unsigned numbers.

The product of the two numbers is calculated using the shift and add algorithm. The
solution with comments is given below:

1 # Initialize the inputs and the output.
2 # Set the upper 16 bits of a0 and a1 to zero.
3 start:
4 slli t0, a0, 16
5 srli t0, t0, 16
6 slli t1, a1, 16
7 srli t1, t1, 16
8
9 # Initialize the product

10 add a0, zero, zero
11
12 loop:
13 beq t1, zero, end # If t1 = zero, we end the loop
14
15 # The least significant bit of t1 determines if t0 must be added to a0.
16 andi t2, t1, 1 # t2 <- the least significant bit of t1
17 beq t2, zero, skip # if t2 = zero, skip addition
18 add a0, a0, t0 # otherwise, add t0 to a0
19
20 # Prepare the two operands for the next iteration by shifting them by 1 bit
21 # The first operand (t0) is shifted to the left.
22 # The second operand (t1) is shifted to the right.
23 skip:
24 slli t0, t0, 1 # Shift t0 to the left
25 srli t1, t1, 1 # Shift t1 to the right
26 j loop # jump to loop
27
28 end:
29 nop

b) As the upper 16 bits of both operands are initialized to zero at the beginning of the
program, their maximum effective size is 16 bits. The result is 32-bit wide, therefore,
there can’t be any overflow because multiplying two 16-bit numbers yields a value that
can be represented using 32 bits: (216 − 1)(216 − 1) = 232 − 217 + 1 < 232 − 1
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c) The 16 most significant bits of the operands are set to zero by the srli instructions
and no sign extension is performed. These operands are thus interpreted as unsigned.

d) If we replace the first srli instruction by srai, we interpret the first operand as
signed, while the other remains unsigned. The question is whether this has any effect
on the correct execution of the program. There are two cases to consider:

• The first operand is positive. This case is not different than the original program.
Thus using srai has no effect and the program stores a valid result in a0 at the
end of execution.

• The first operand is negative. Consider −O1 represents the value of the first op-
erand. Treating such a value as an unsigned number gives us 232−O1. Therefore,
multiplying this value with a positive number like O2 yields:

(232 −O1) ·O2 = 232 ·O2 −O1 ·O2 = 0−O1 ·O2 = (−O1) ·O2

The result is correct if we interpret it as a signed value. Note that 232 · O2 cannot
be represented with 32 bits and becomes zero.

Thus the program still stores a valid result in a0 if we replace srli with srai as long
as the result is interpreted as signed.

e) If we replace both the first and second srli instructions by srai, the program still
stores a valid result in a0. There are four cases to consider:

• Both operands are positive. This case is the same as the original program.

• The first operand is negative and the second operand is positive. This case is
similar to the one discussed in the previous point.

• The first operand is positive and the second operand is negative. This case is
similar to the previous point. Consider O1 and −O2 represent the values of the
first and second operands, respectively. We have:

O1 · (232 −O2) = 232 ·O1 −O1 ·O2 = −O1 ·O2 = O1 · (−O2)

Therefore, the result is correct if it is interpreted as signed.

• Both operands are negative. Consider −O1 and −O2 as the value of the first and
second operands, respectively. We have:
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(232 −O1)(2
32 −O2) = (264 − 232 ·O1 − 232 ·O2 +O1 ·O2)

= 232(232 −O1 −O2) +O1 ·O2

= 0 +O1 ·O2

= O1 ·O2

This is the expected and correct value.

Hence, changing the mentioned srli instructions by srai does not alter the beha-
viour of the program as long as the result is interpreted as signed.

f) The program is not correct if all three srli instructions are replaced by srai. In-
deed, if register t1 contains a negative value, shifting it using srai will extend the
sign bit. Repeatedly shifting this negative value to the right using srai will keep the
most significant bit as 1, and the value in t1 will never reach zero. Consequently, the
program remains in an infinite loop.
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[Exercise 25] Floating Point Larger-Than

Floating point formats in computer science are similar to the common scientific nota-
tion, with a mantissa and an exponent. For example −9.062 · 102 or 3.87 · 10−1. Usually
we want to represent numbers with a mantissa bound between 100 and 101 in which
case it is considered as normalized. If a given number is not normalized it is mul-
tiplied by an appropriate power of 10 to adapt the exponent so that the mantissa is
within normalized bounds. For example :

−0.0041 · 104 = −4.1 · 101
9760.1 · 10−8 = 9.7601 · 10−5

Now consider the following 32-bit binary floating point format:

e
2431

m : sign of the mantissa m
m : absolute value of the mantissa m 
e  : exponent (signed, 2s complement)

 
s

v

ms mv

23 22 0

m

Figure 90: 32-bit floating point format

Bits 31 to 24 represent the exponent e in Two’s Complement, while bits 23 to 0 represent
the mantissa m in sign and magnitude, i.e. bit 23 represents the sign and bits 22 to 0 the
absolute value. A value in floating point format can thus be represented as:

(−1)ms ·mv · 2e

The point in the mantissa is implied after the most significant bit MSB, and thus bit
22 has a weight of 1, bit 21 a weight of 1

2
, bit 20 a weight of 1

4
and so on. Moreover,

numbers are normalized, i.e. 20 ≤ mv ≤ 21, meaning that the mantissa is aligned in a
way such that bit 22 is always ’1’ and the exponent is adjusted accordingly. Of course
in a real application this would be implied because it is useless, except to represent the
value zero whose existence we will ignore in what follows.

As an example we represent some values in normalized floating point notation:

14 = 1.75 · 23 = ⟨0000′0011′0111′0000′0000′0000′0000′0000⟩
−0.312 = −1.25 · 2−2 = ⟨1111′1110′1101′0000′0000′0000′0000′0000⟩
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a) Write a RISC-V program that receives two numbers in the aforementioned floating
point format in registers a0 and a1 when the program starts. Your program should
compare the two numbers and store 1 in register a0 at the end of execution if the first
number is strictly greater than the second one. If not, the program should store 0 in
register a0.

b) Write a RISC-V program that converts a non-normalized number into a normalized
one, according to the floating point format presented earlier. When the program starts,
register a0 contains the non-normalized number. The normalized number should be
stored in register a0 at the end of execution. The zero number must be ignored as well
as potential overflows of the floating point format.
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[Solution 25] Floating Point Larger-Than

a) To perform the required comparison, we can use the algorithm illustrated below:

Initialize RetVal to 0

Initialize Sign to 0

Equal numbers ?

Extract the signes

Equal signs ?

NO

YES

Invers the value 
of RetVal

YES

Equal exponents ?

YES

Extract the mantissas

First number's 
exponent is greater ?

NO

RetVal=1

YES

First positif
number ?

NO

RetVal=1

YES

First number's 
mantissa is greater ?

RetVal=1

YES

Sign=0?

NO

NO

NO

Store the sign
Extract the exponents

Return RetVal

NO

YES

Figure 91: Algorithm for the comparison
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The corresponding RISC-V program is given below with comments:

1 compare:
2 add t4, zero, zero # Extract RetVal
3 add t0, zero, zero # Initialize sign
4 beq a0, a1, smaller_eq # Equal numbers?
5 sign_check:
6 slli t1, a0, 8 # Extract the signs
7 srli t1, t1, 31
8 slli t2, a1, 8
9 srli t2, t2, 31

10 beq t1, t2, set_sign # Same signs ?
11 beq t1, zero, greater # 1st pos number?
12 j smaller_eq
13 set_sign:
14 add t0, zero, t1 # Store the sign
15 exp_check:
16 srai t1, a0, 24 # Extract the exponent
17 srai t2, a1, 24
18 beq t1, t2, mantissa_chk # same exponent?
19 slt t3, t1, t2
20 beq t3, zero, greater
21 j smaller_eq
22 mantissa_chk:
23 slli t1, a0, 9 # Extract the mantissa
24 slli t2, a1, 9
25 sltu t3, t2, t1
26 beq t3, zero, smaller_eq
27 greater:
28 addi t4, zero, 1 # RetVal=1
29 smaller_eq:
30 xor t4, t4, t0 # Adjust RetVal
31 mv a0, t4 # Store result in a0
32 nop

b) The idea is to shift the mantissa to the left until the MSB is ’1’ and adjust the
exponent accordingly. The RISC-V code is given below:

1 normalize:
2 slli t0, a0, 9 # Extract the mantissa
3 srai t1, a0, 24 # Extract the exponent
4 test_nrm:
5 slt t2, zero,t0 # If MSB is 1
6 beq t2, zero,reformat # end loop
7 slli t0, t0, 1 # Left shift mantissa
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8 addi t1, t1, -1 # Decrement exponent
9 j test_nrm # Stay in the loop

10 reformat:
11 srli t2, a0, 23
12 slli t2, t2, 31 # Sign of MSB
13 srli t0, t0, 1 # Shift mantissa by 1 bit
14 add t2, t2, t0 # Mantissa and sign
15 srli t2, t2, 8 # Shift mantissa and sign
16 slli t1, t1, 24 # Shift exponent
17 add a0, t2, t1 # The format is correct
18 nop
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[Exercise 26] Understanding RISC-V

Consider the following RISC-V program:

1 start: add t0, zero, a0
2 add t1, zero, a1
3 add t2, zero, a2
4 add a0, zero, zero
5 loop: beq t2, zero, fin
6 lw t3, 0(t0)
7 lw t4, 0(t1)
8 addi t5, zero, 32
9 slt t6, t2, t5

10 beq t6, zero, cont1
11 add t5, zero, t2
12 cont1: xor t6, t3, t4
13 cont2: andi t3, t6, 1
14 add a0, a0, t3
15 srli t6, t6, 1
16 addi t2, t2, -1
17 addi t5, t5, -1
18 bne zero, t5, cont2
19 addi t0, t0, 4
20 addi t1, t1, 4
21 j loop
22 fin: nop

When the program starts, initial values are present in registers a0, a1, and a2. Re-
gisters a0 and a1 contain each the start address of a list of bytes, and a2 contains an
unsigned number. At the end of execution, the result is stored in register a0.

a) Explain in a sentence what the above RISC-V code does.

b) Is the given code written for a little-endian or big-endian processor? Clearly state
the reason.

c) The above code makes use of the xor instruction. Suppose this instruction does not
exist. Write a sequence of instructions that replace the xor instruction.
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[Solution 26] Understanding RISC-V

a) The supplied RISC-V code counts the number of bits that are different in the two
input lists. The beginning of each list is given in registers a0 and a1, while a2 con-
tains the number of bits to compare. The result is stored in register a0 at the end of
execution. A commented version of the RISC-V code is given below:

1 # Initializations
2 start: add t0, zero, a0 # Addresses of the lists
3 add t1, zero, a1 # in t0 et t1
4 add t2, zero, a2 # The number of bits in t2
5 add a0, zero, zero # Initialize the result
6
7 # The loop takes 32 bits of each list and counts the number of
8 # different bits for each pair of 32 bits. It finds the total
9 # number of different bits in the lists

10 loop:
11 beq t2, zero, fin # All the bits have been checked?
12 lw t3, 0(t0) # Put the 32 following bits of
13 lw t4, 0(t1) # each list in t3 and 4
14 addi t5, zero, 32 # Init. counter at 32 (bits)
15 slt t6, t2, t5 # If less than 32 bits remain
16 beq t6, zero, cont1 # set counter value to the number
17 add t5, zero, t2 # of remaining bits
18
19 cont1:
20 xor t6, t3, t4 # The different bits of the 32 bit
21 # pair are stored in t6
22
23 # The loop cont2 counts the number of bits set to 1 in the
24 # register t6 (the number of different bits in the current
25 # comparison)
26 cont2:
27 andi t3, t6, 1 # Extract the last bit
28 add a0, a0, t3 # Add this bit to a0
29 srli t6, t6, 1 # Right shift t6 by 1
30 addi t2, t2, -1 # Decrement the counter of total bits
31 addi t5, t5, -1 # Decrement the counter of the loop
32 bne zero, t5, cont2 # Check the end of the loop
33 addi t0, t0, 4 # Increment pointer
34 addi t1, t1, 4 # to read the next 32 bits
35 j loop # Jumps to the top of the loop
36 fin:
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37 nop

b) The RISC-V code is written for a little-endian processor. This can be deduced from
the fact that counting the bits that are different starts from the least significant bit (in-
struction andi t3, t6, 1. That is, it is assumed that the least significant byte of
a word is stored at the smallest address in memory, which characterizes little-endian
processors.

Figure 92 shows how the bytes are organized in the memory and the difference
between little and big-endian processors.

1000

Part of the words where the bits are valid.

 1001

1002

1003

1004

1005

1006

1007

The previous 
32 bits word

The actual 
32 bits word

End of the list 
of bits

The actual 32 bits word
 on the register $t6

For a little-endian processor

For a big-endian processor

Figure 92: Words in memory for little/big5-endian processors

c) The xor operation can be expressed logically as follows:

A xor B = A · B̄ + Ā · B (1)

We can thus replace instruction xor t6, t3, t4 with the following sequence of in-
structions, the result is stored in t6 as in the original instruction.

1 not t6, t3 # not(A) in t6
2 not s0, t4 # not(B) in s0
3 and s1, s0, t3 # A.not(B) in s1
4 and s0, t6, t4 # B.not(A) in s0
5 or t6, s1, s0 # A.not(B) + B.not(A) in t6
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[Exercise 27] Multiplication in Finite Fields

We would like to create a RISC-V program that implements elementary operations for
finite fields modular arithmetic, in binary representation. A finite field F(2n) is the set
of integers that can be represented on n bits.

When performing an addition in a finite field, each pair of bits is added independ-
ently, i.e., the carry is not propagated to the adjacent higher weight pair as done in an
ordinary addition.

Therefore, an addition corresponds to a simple bit-wise xor operation. The following
example compares an ordinary addition to one carried out in a finite field F(24):

Ordinary Addition Addition in Finite Field F(2n)

0 1 0 1
+ 0 0 1 1

1 0 0 0

0 1 0 1
+ 0 0 1 1

0 1 1 0

Multiplication in a finite field F(2n) is carried out in two phases. The first phase consists
in multiplying the two numbers similarly to an ordinary multiplication, i.e., by gener-
ating partial products then summing them. The addition of these partial products will
yield a different result because this operation is defined differently in finite fields. This
is illustrated by the following example:

Ordinary Multiplication Multiplication in Finite Field F(2n)

1 0 1 1
× 1 1 1 0

0 0 0 0
1 0 1 1

1 0 1 1
+ 1 0 1 1

1 0 0 1 1 0 1 0

1 0 1 1
× 1 1 1 0

0 0 0 0
1 0 1 1

1 0 1 1
+ 1 0 1 1

1 1 0 0 0 1 0

a) Write a RISC-V program that implements the first phase of the multiplication in a
finite field. When the program starts, the two 16-bit operands are in registers a0 and
a1. The 31-bit result is stored in register a0 at the end of execution.

It can be observed that the result of the multiplication’s first phase cannot be correct
as it generally does not belong to the finite field F(24). This is why the second phase is
necessary. The second phase of a multiplication in a finite field F(24) consists in finding
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a result on n bits. To this effect we use a property of finite fields: in each finite field, a
value m ∈ F(2n) is associated to 2n. For example, in the finite field F(24), we can have
24 = m = 3. Thanks to this property, all bits whose weight is greater or equal to n can
be rewritten as a function of m and added to the result.

In the example we have F(24) and 24 = 3:

24 = 3 = 0011
25 = 24 << 1 = 0110
26 = 24 << 2 = 1100

Starting from a certain power that depends on m, many iterations are necessary before
having a result on n bits:

27 = 24 << 3 = 11000 = 24 + 8 = 0011 + 1000 = 1011
28 = 24 << 4 = 110000 = 25 + 24 = 0110 + 0011 = 0101
29 = 24 << 5 = 1100000 = 26 + 25 = 1100 + 0110 = 1010
...

Note that all sums are done according to the definition of the addition in the finite
field (which is bit-wise XOR). Given this property, we can replace each bit of the first
phase’s result whose weight lies between n and 2n−1 with values obtained from m, so
as to obtain a value that belongs to the finite field F(2n). In the preceding multiplication
example, if 24 = 3, we obtain:

1100010 = 26 + 25 + 2 = 1100 + 0110 + 0010 = 1000

Thus, in the finite field F(24), with 24 = 3, the result of the multiplication of 11 by 14 is
8.

b) In the finite field F(24), with 24 = 3, multiply 5 by 13 giving all steps of the calcula-
tion.

c) In order to reduce the result to n bits, we can go through all bits whose weight
lies between n and 2n − 1 and if their value is ’1’ we set it to ’0’ and add a value
depending on m. Does it seem wiser to go through the bits starting from the one with
the most significant weight or from the one with the least significant weight ? Why ?
How should be generated the value that you will add ?
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d) Create a RISC-V program that reduces a 32-bit number in a given finite field. When
the program starts, the number is supplied in register a0 (and could be the result of
the multiplication’s first phase). The size n of the finite field is given as an initial value
in register a1. The value m to be associated to 2n is given as an initial value in a2.
Register a0 is used to store the result at the end of execution.

300 of 304 Version 1.0 of 26th May 2025, EPFL ©2025



Solution 27
RISC-V

Exercise Book
CS-173 Fundamentals of Digital Systems

[Solution 27] Multiplication in Finite Fields

a) Multiplication’s first phase:

1 phase1: add t3, zero, zero # partial sum
2 add t0, zero, a0
3 add t1, zero, a1
4 loop: beq t1, zero, fin
5 andi t2, t1, 1
6 beq t2, zero, next
7 xor t3, t3, t0
8 next: slli t0, t0, 1
9 srli t1, t1, 1

10 j loop
11 fin: addi a0, t3, 0
12 nop

b) The result of 5 times 13 in the finite field is given below:

1 1 0 1
× 0 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1
+ 0 0 0 0

0 1 1 1 0 0 1

111001 = 25 + 24 + 9 = 0110 + 0011 + 1001 = 1100

c) By going through the bits from right to left we run the risk of reintegrating bits with
an index greater than n − 1, and thus having to test the same bits several times. By
going through them from left to right this problem no longer exists, as there is no way
of re-injecting new bits into already visited slots. The value to be added is initialized as
follows: r = (2n+m) << (31−n). Thus for the first iteration, if the most significant bit
of the value to convert is ’1’, performing a xor between this value and r will allow
inverting the most significant bit and adding m (shifted to the right position). Then, r
must be shifted by 1 bit to the right for the next iteration.

d) The code for the second phase is given below:

1 phase2: add t3, zero, a0
2 addi t0, zero, 1
3 slli t1, t0, 31
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4 sll t0, t0, a1
5 add t0, t0, a2 # t0 = 2ˆn + m
6 addi t2, zero, 31 # t2 = 31
7 sub t2, t2, a1 # t2 = t2 - a1
8 sll t0, t0, t2
9 loop: srl t2, t3, a1

10 beq t2, zero, fin
11 and t2, t3, t1
12 beq t2, zero, next
13 xor t3, t3, t0
14 next: srli t1, t1, 1
15 srli t0, t0, 1
16 j loop
17 fin: addi a0, t3, 0
18 ret

t0 is the replacement value for the most significant bits. t1 is the mask used to go
through the bits whose index (weight) is greater than n− 1.
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[Exercise 28] Architecting a new instruction

Figure 93: Single-cycle CPU schematic

Consider the single-cycle CPU as illustrated in Figure 93. We want to add a new in-
struction to this CPU, called rdpc. This instruction will copy the current value of the
PC register into a destination register located inside the register file.

rdpc will only require a destination register; no source register operands are determ-
ined (since the value will be taken from the PC register) and no immediate value is
specified. Thus, for instance, rdpc x2 will copy the current value of PC into x2; this
is the memory address correponding to this instruction.

a) Make the required modifications in the datapath in order to support this new in-
struction. You only need to make changes to the schematic; assume that the instruction
set supports rdpc and the opcode exists.

Add the necessary logic so rdpc can be implemented; you may add one new control
signal (called PCCopy) to the CPU. Explain the changes you have made to the schem-
atic, and if you add a control signal, explain when the signal will be active.
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[Solution 28] Architecting a new instruction

Figure 94: Modified single-cycle CPU schematic

a) Figure 94 denotes how this operation can be achieved on the CPU schematic.

The signal PCCopy will be active if and only if the instruction is equal to rdpc.

A multiplexer has been added in the path to the registers’ write data, and the control
signal for this multiplexer is PCCopy. If the instruction is rdpc, the value of PC will
be passed over as write data for the registers. Otherwise, whatever value exists on the
previous multiplexer (as was the case normally, without our changes) will be written.
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